一、项目背景与意义
随着时尚行业和智能零售的蓬勃发展,个性化的服装搭配推荐成为提升用户购物体验和品牌竞争力的重要方向。传统的服装搭配通常依赖人工经验,效率低且难以个性化。借助深度学习技术,尤其是目标检测模型,我们可以实现对用户当前服装风格的精准识别,并推荐相匹配的商品,推动智能时尚零售的发展。
本项目旨在构建一个基于YOLOv8的服装风格检测与搭配推荐系统,系统能够:
- 实时检测用户穿着的服装类别及风格
- 根据检测结果智能推荐搭配商品
- 提供简洁友好的UI界面,实现拍照识别与推荐
- 支持模型训练与定制化风格类别扩展
二、技术方案概述
2.1 选择YOLOv8作为核心模型
YOLOv8是当前目标检测领域的领先模型,兼顾高精度与高速推理,适合实时服装检测任务。其优秀的训练效率和推理速度满足实际应用需求。
2.2 系统架构
- 服装检测模块
利用YOLOv8检测用户穿着的服装类别(如T恤、衬衫、裤子、裙子等)及风格(休闲、商务、运动等) - 搭配推荐模块
结合检测结果,从商品数据库