1. 引言
随着电子商务和快递行业的爆发式增长,快递包裹分拣系统的自动化水平成为提高效率、降低错误率的关键。面单上的地址和条形码是快递分拣的关键信息,如何快速准确地识别这些信息成为研究热点。
本文将结合当前先进的目标检测技术YOLOv8,讲解如何实现快递面单地址与条形码的检测识别,并设计一个基于Python的UI界面,实现可视化分拣辅助工具。文章详细讲述数据集的准备、模型训练、推理及UI交互全过程,配以完整代码,适合开发者和研究者参考。
2. 技术背景与研究意义
快递包裹的自动化分拣主要依赖面单上的条形码和地址信息。传统方式多采用人工扫描,效率低且容易出错。基于计算机视觉的自动识别方法能大幅提升速度和准确率。
2.1 目标检测技术发展
近年来,深度学习推动了目标检测技术快速发展,YOLO系列(You Only Look Once)因其实时性和高精度广泛应用于工业场景。YOLOv8是YOLO系列最新版本,具备更高的准确率和更快的推理速度。
2.2 面单识别的挑战
- 多样性:不同快递公司的面单格式差异大,字体、条码类型多样。
- 环境复杂:拍摄角度、光照条件变化大&#