1. 项目背景与意义
广告牌投放效果评估是广告主关注的核心问题,传统依赖人工或简易传感器计数,数据准确性和实时性受限。随着深度学习技术发展,基于视觉的自动化路人检测和停留时间统计为广告效果分析带来变革。
本项目利用YOLOv8实现高精度路人检测,通过跟踪技术计算每个路人在广告区域的停留时间,并通过UI界面实时展示统计结果,提升广告投放的智能化水平。
2. 技术挑战与方案设计
2.1 技术挑战
- 检测精度与速度的权衡:需实时处理高清视频,要求模型轻量快速。
- 遮挡与密集人群:高密度环境中路人检测和跟踪困难。
- 准确的停留时间计算:跟踪算法需精确对应同一目标。
- 区域定义灵活:广告区域形状多样,系统需适配。
2.2 解决方案
- 采用YOLOv8轻量模型实现实时路人检测。
- 利用Deep SORT或简易的IoU匹配实现目标跟踪。
- 预设广告感兴趣区域(ROI),检测对象是否在区域内进行停留时间累计。
- 开发基于Tkinter的UI界面,实现视频播放、检测展