一、引言
在智能交通系统中,车辆检测与计数是实现交通流量分析、拥堵管理、智能信号控制等功能的基础任务。传统车辆检测方法依赖人工特征,效果有限且易受环境影响。近年来,深度学习,特别是目标检测领域的YOLO(You Only Look Once)系列模型,因其高效准确,成为车辆检测的主流方法。本文将详细介绍如何基于最新YOLOv8模型,结合公开数据集,实现一个高性能车辆检测与计数系统,并在Python环境中构建友好UI界面,方便用户实时检测和统计车辆。
二、技术背景与相关工作
2.1 车辆检测的挑战
- 车辆种类多样(小轿车、货车、摩托车等)
- 车辆大小、姿态、遮挡情况复杂
- 复杂背景与光照变化
- 实时检测对模型速度和精度的双重要求
2.2 深度学习目标检测综述
-
两阶段检测器:如Faster R-CNN,精度高但速度较慢
-
单阶段检测器:如YOLO系列、SSD,兼顾速度和精度,适合实时检测
-
YOLOv8简介&#x