1. 背景与意义
交通信号灯是城市交通管理的重要组成部分,准确检测信号灯的状态对智能交通系统(ITS)、自动驾驶辅助系统(ADAS)等领域意义重大。传统方法依赖于规则设定和颜色阈值,受光照、天气影响大,鲁棒性不足。深度学习的目标检测技术,特别是基于YOLOv8的实时检测,提供了高效、准确、实时的解决方案。
2. 交通信号灯状态检测的难点与挑战
- 多样的环境光照条件:强光、阴影、夜晚等都影响检测效果。
- 信号灯的多样形态和视角变化:不同城市、角度、信号灯设计不一。
- 信号灯颜色容易混淆:红黄绿三色在不同光照下颜色接近。
- 检测速度要求高:实时处理保证交通安全。
3. YOLOv8模型简介
YOLO(You Only Look Once)系列模型是端到端的单阶段目标检测框架,YOLOv8是Ultralytics最新发布的版本,集成了更强的特征提取网络、更优的训练策略和高效推理,兼具高准确率和快速速度,适合实时交通信号灯状态检测。
YOLOv8的主要特点: