1. 项目背景与意义
2020年新冠疫情爆发后,口罩成为了最重要的防疫措施之一。在公共场所,实时监测人群口罩佩戴情况对疫情防控具有重要意义。传统的人力巡查不仅耗时费力,还存在误判与漏检问题。因此,利用计算机视觉技术进行口罩佩戴自动检测成为当前研究和应用的热点。
本项目旨在使用先进的目标检测模型YOLOv8实现口罩佩戴检测,同时配合简洁的UI界面,实现实时视频流的口罩佩戴识别。该系统可以应用于学校、商场、车站等公共场所,辅助疫情防控工作人员有效管控口罩佩戴情况。
2. 口罩佩戴检测的技术挑战
口罩佩戴检测虽然看似简单,但在实际应用中存在多种挑战:
- 检测多样性:口罩类型多样(医用口罩、布口罩、N95等),外观差异大。
- 遮挡和姿态变化:人脸被部分遮挡或角度倾斜,导致检测难度增大。
- 复杂背景与光照变化:公共场所环境复杂,光线和背景多变。
- 实时性能要求:系统需要快速响应,保证检测延迟低。
这些挑战要求模型既要具备高准确率,也要保证良好的实时性能。