一、引言
公共场所流量监测作为城市智能管理和安全保障的重要组成部分,近年来受到越来越多的关注。有效的流量监测不仅能够帮助管理部门及时掌握场所拥挤情况,进行人流分布分析,还能为疫情防控、紧急疏散等提供重要数据支持。传统的人工统计或传感器技术受限于准确度与布设难度,深度学习技术的兴起为流量监测带来了新机遇。
本文将围绕当下最先进的目标检测模型YOLOv8,结合一个直观友好的UI界面,实现一个公共场所流量监测系统。我们将详细介绍项目设计思路、使用的数据集、模型训练流程、界面开发细节及完整代码示例,帮助读者快速掌握端到端公共场所流量检测系统的构建。
二、技术背景与YOLOv8模型简介
2.1 公共场所流量监测的需求
公共场所流量监测的核心任务是准确检测并计数画面中的人员数量,实时了解场所内人群密度,进而实现流量统计与管理。其挑战包括:
- 人员姿态多样、遮挡严重
- 光照环境复杂
- 摄像头视角多变
- 实时性要求高
2.2 目标检测技术简述
目标检测旨在定位并分类图像中的目标,常用方法分为两大类:
- Two-stage方法:如Faster R-CNN,准确率高但速度较慢。
- One-sta