摘要
随着零售行业智能化的发展,顾客购物行为分析成为提升用户体验、优化商品陈列及运营管理的重要手段。本文介绍了一套基于YOLOv8目标检测框架的顾客购物行为分析系统设计与实现。系统不仅能实时识别顾客及其动作,还结合Python UI界面实现交互式数据展示。文章详细介绍了数据集选择、模型训练流程、代码实现和UI设计,适合初学者及工业应用开发者参考。
1. 引言
零售行业面临日益激烈的市场竞争,顾客购物行为分析成为数字化转型的关键环节。准确理解顾客在店内的行为轨迹、停留时间及商品交互情况,有助于商家制定更合理的商品布局、促销策略和客户服务方案。
传统的购物行为分析依赖传感器或手工记录,效率低且难以准确捕捉复杂动作。基于计算机视觉的目标检测技术,尤其是YOLO系列,提供了实时、准确的识别方案。本文选用YOLOv8最新版本,结合实用数据集,完成一个从数据预处理、模型训练到UI展示的全流程,实现顾客购物行为实时监测。
2. 购物行为分析的研究背景与意义
购物行为包含顾客的多种动作,如选取商品、放回、排队结账等。精确分析这些行为,零售商可获得以下收益:
- 优化商品陈列,提升销售额
- 监测顾客停留区域,调整店内布局
- 提供精准促销,提升顾客满意度
- 减少人力成本&