1. 引言
随着人工智能技术的快速发展,计算机视觉在人机交互中的应用日益广泛,试衣镜作为智能零售的重要应用场景,通过摄像头实时识别用户穿着的服装类型,实现虚拟试衣、款式推荐等功能,极大提升了购物体验和效率。深度学习尤其是目标检测算法的发展,为服装识别提供了强有力的技术支持。
本文将基于YOLOv8最新目标检测模型,结合公开的服装识别数据集,详细介绍试衣镜中用户服装识别系统的实现过程,并通过Python GUI界面实现实时检测结果展示。本文目标是为想要进入智能零售与服装识别领域的工程师和研究者提供一套可实操的端到端解决方案。
2. 试衣镜中的服装识别问题介绍
试衣镜主要通过摄像头捕获用户图像,实时识别用户身上穿着的服装类别(如上衣、裤子、裙子、外套等),结合虚拟试衣技术,辅助用户选择合适款式。核心技术是精确且实时的服装目标检测。
服装识别挑战包括:
- 服装样式多样,颜色复杂
- 人体姿态变化大
- 多人重叠时分割困难
- 光照、背景干扰强
基于目标检测的深度学习模型能够直接在图像中定位服装框并识别类别,具备良好的鲁棒性和效率。
3. YOLOv8模型架构与优势
YOLO(