🧠 一、项目背景
随着制造业逐渐迈向智能化,自动化检测和识别成为提升生产效率、减少人工误差的关键手段。装配线中,不同种类的零件(如齿轮、螺母、电容、连接器等)需被准确识别、分类和跟踪,以便实现流程控制和智能抓取。
传统基于图像处理的检测方式鲁棒性较差,受光照、背景干扰、角度变化等因素影响明显。而YOLO(You Only Look Once)系列目标检测模型以其高实时性与高精度,逐渐成为工业视觉主流解决方案之一。
因此,我们提出基于YOLOv8的装配线零件识别系统——AssemblyPartDetector,实现对流水线多类零件的高效检测、分类与坐标定位,并通过UI界面提供交互展示。
📐 二、系统架构设计
系统分为四个主要模块:
- 数据集准备与标注:包括真实工业场景下图像采集与分类标注;
- YOLOv8模型训练与优化:使用Ultralytics YOLOv8框架进行检测器训练;
- 推理部署与坐标提取:实时检测目标并提取bounding box信息;