AssemblyPartDetector:基于YOLOv8的装配线零件识别系统设计与实现

🧠 一、项目背景

随着制造业逐渐迈向智能化,自动化检测和识别成为提升生产效率、减少人工误差的关键手段。装配线中,不同种类的零件(如齿轮、螺母、电容、连接器等)需被准确识别、分类和跟踪,以便实现流程控制和智能抓取。

传统基于图像处理的检测方式鲁棒性较差,受光照、背景干扰、角度变化等因素影响明显。而YOLO(You Only Look Once)系列目标检测模型以其高实时性高精度,逐渐成为工业视觉主流解决方案之一。

因此,我们提出基于YOLOv8的装配线零件识别系统——AssemblyPartDetector,实现对流水线多类零件的高效检测、分类与坐标定位,并通过UI界面提供交互展示。


📐 二、系统架构设计

系统分为四个主要模块:

  1. 数据集准备与标注:包括真实工业场景下图像采集与分类标注;
  2. YOLOv8模型训练与优化:使用Ultralytics YOLOv8框架进行检测器训练;
  3. 推理部署与坐标提取:实时检测目标并提取bounding box信息;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值