1️⃣ 项目背景
现代包装工业生产线普遍采用自动化设备,但仍存在部分视觉检测依赖人工或传统图像处理算法的问题,具体如:
- 包装未完全封口
- 标签印刷偏移
- 包装破损或漏装
- 尺寸偏差未检出
使用 YOLOv8 + 深度学习模型 能实现对包装工序中上述问题进行自动化、实时识别与反馈,从而提升良品率与生产效率。
2️⃣ 系统架构概述
整体架构分为三层:
🔹 数据层(数据集准备)
- 来源:生产线上采集的包装图片
- 标签:损坏、封口不全、正常、错标、空包等
🔹 模型层(YOLOv8)
- 使用 Ultralytics YOLOv8 进行训练与推理
- 多类目标检测(multi-class packaging defects)
🔹 应用层(UI)
- 以 PyQt5 开发桌面端界面