[特殊字符]AutoPackingDetection:基于YOLOv8的自动包装检测系统

1️⃣ 项目背景

现代包装工业生产线普遍采用自动化设备,但仍存在部分视觉检测依赖人工或传统图像处理算法的问题,具体如:

  • 包装未完全封口
  • 标签印刷偏移
  • 包装破损或漏装
  • 尺寸偏差未检出

使用 YOLOv8 + 深度学习模型 能实现对包装工序中上述问题进行自动化、实时识别与反馈,从而提升良品率与生产效率。


2️⃣ 系统架构概述

整体架构分为三层:

🔹 数据层(数据集准备)

  • 来源:生产线上采集的包装图片
  • 标签:损坏、封口不全、正常、错标、空包等

🔹 模型层(YOLOv8)

  • 使用 Ultralytics YOLOv8 进行训练与推理
  • 多类目标检测(multi-class packaging defects)

🔹 应用层(UI)

  • PyQt5 开发桌面端界面
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值