1. 引言
随着工业自动化的推进,机器手臂被广泛应用于制造、装配、检测等多个领域。机器手臂的工作环境监测成为保障生产安全、提高效率的重要环节。通过实时检测工作区域中的异常情况(如人员入侵、设备异常、杂物堆积等),可有效预防事故发生,保障设备与人员安全。
本文将基于目前最先进的目标检测模型YOLOv8,结合友好的UI界面,实现一套完整的机器手臂工作环境监测系统。文中不仅介绍模型训练细节,还包含数据集推荐及处理、代码示例以及如何结合前端UI实现实时监控。
2. 机器手臂工作环境监测的重要性
机器手臂通常作业于高速自动化流水线,作业环境复杂且潜在风险多:
- 人员安全:防止非授权人员误入危险区域。
- 设备保护:监测设备是否异常,如漏油、异物。
- 环境整洁:防止杂物堆积导致卡壳或事故。
- 作业质量:监控作业环境是否符合规范。
通过视觉检测技术,利用摄像头捕获现场图像,结合智能算法实现自动识别和报警,是实现智能工厂安全管理的关键。