1. 引言
细胞计数是病理分析和疾病诊断中的基础任务,尤其在肿瘤检测、炎症分析等领域具有重要作用。传统人工计数费时且易受主观影响,深度学习目标检测技术为自动高效、精准细胞计数提供了新思路。本文基于YOLOv8模型,结合PyQt5设计交互式界面,实现在病理切片图像中的细胞自动检测和计数,助力病理诊断自动化。
2. 病理切片细胞计数的意义及应用
- 辅助病理诊断:快速统计细胞密度及分布,辅助医生判断组织健康状态
- 癌症研究:定量肿瘤细胞,分析肿瘤异质性及发展趋势
- 药物疗效评估:监测细胞响应,评估药物治疗效果
- 教学与科研:自动标注与计数,提升教学效率与研究精度
3. 目标检测技术及YOLOv8简介
3.1 目标检测基础
目标检测任务包括定位图像中的目标(细胞)并分类。常用方法有RCNN系列、SSD、YOLO系列。YOLO因其速度快、精度高,成为实时检测领域首选。