1. 引言
随着智能监控系统和人机交互技术的快速发展,体态监测和异常行为检测在安全监控、老年护理、智能零售等领域日益重要。基于深度学习的视觉识别技术为实现高效准确的行为分析提供了有力支撑。本文提出基于YOLOv8目标检测模型与PyQt5交互界面相结合的体态监测和异常行为检测系统,覆盖从数据准备、模型训练、推理部署到UI实现的全流程,帮助开发者快速搭建实用的视觉辅助系统。
2. 体态监测和异常行为检测的应用背景与意义
- 安全监控:自动发现异常行为(摔倒、打架、奔跑等),及时预警
- 健康护理:老年人跌倒检测,行为习惯监测,辅助护理决策
- 智能商业:顾客行为分析,优化店铺布局和服务
- 智能交互:机器人根据用户姿态调整交互方式,提升体验
3. 计算机视觉在人体姿态识别和异常检测中的发展
传统人体姿态识别基于关键点检测和骨架重建,异常行为检测通常依赖序列分析。近年来,端到端的目标检测技术,如YOLO系列,通过检测人体及其状态,简化了识别流程。YOLOv8结合了高效的卷积结构和先进的标签分配机制&#x