1. 引言
新冠疫情以来,口罩佩戴和防护服穿戴已成为公共卫生安全的关键防护措施。自动化、智能化检测口罩和防护服的佩戴情况,有助于提升场所管理效率,保障公共健康安全。传统人工检查效率低、误差大,基于深度学习的计算机视觉技术则提供了高效、准确的解决方案。
本博客聚焦于基于最新YOLOv8目标检测模型,结合Python与PyQt5构建一个功能完善的口罩和防护服佩戴检测系统,实现实时视频流分析、结果展示和用户交互,助力疫情防控和安全监测。
2. 任务定义及技术挑战
本项目目标是:
- 检测人员是否正确佩戴口罩
- 检测人员是否穿戴防护服
- 支持多类别检测(口罩戴好、未戴口罩、防护服穿戴情况)
- 支持实时视频流检测与界面交互
主要挑战包括:
- 多种佩戴状态识别(戴好、没戴、戴错等)
- 防护服与其他服装的区分
- 不同光照、遮挡、姿态变化的鲁棒性
- 实时性与准确性的平衡