1. 项目背景与研究意义
眼底图像是临床眼科诊断的重要依据,通过分析视网膜的血管、视盘、黄斑等结构,医生可以诊断糖尿病视网膜病变、青光眼、黄斑变性等多种眼底疾病。传统人工分析耗时且依赖医生经验,自动化眼底图像异常检测系统能极大提高诊断效率和准确性,有助于早期发现、预防和治疗。
近年来,深度学习尤其是目标检测算法取得显著进展。YOLO系列以其快速准确的特性,成为医疗图像异常检测的理想选择。本项目结合最新YOLOv8模型,开发一套眼底图像异常检测系统,配备PyQt5图形用户界面,实现从数据准备、模型训练到实时检测的全流程解决方案。
2. 眼底图像异常检测任务解析
2.1 任务定义
-
自动检测眼底图像中的异常区域,包括但不限于:
- 病变出血点(Microaneurysms)
- 渗出物(Exudates)
- 新生血管(Neovascularization)
- 视盘异常
-
目标检测框选异常区域并给出对应分类标签
-
支持单张图片及实时视频检测
2.2 任务挑战
- 异常区域尺寸