1. 引言
随着医疗健康监测的智能化发展,病人移动姿态监测系统越来越受到关注。通过实时捕捉病人的移动姿态信息,不仅可以帮助医护人员及时了解病人的身体状态和活动状况,还可以在跌倒预警、康复评估等场景发挥重要作用。深度学习技术特别是目标检测算法为实现这一目标提供了强有力的工具。
本篇博客将以YOLOv8为核心,结合Python的PyQt5图形界面,完成一个病人移动姿态监测系统的全流程开发。包括数据准备、模型训练、推理部署和UI展示。我们将配备完整代码和细致讲解,帮助你快速掌握。
2. 病人移动姿态监测的重要性
- 跌倒预警:老人和康复期病人跌倒风险大,实时监测可及时报警
- 康复指导:监控患者的运动轨迹和姿态变化,辅助理疗调整方案
- 活动量统计:评估患者日常活动量,帮助医生判断恢复情况
- 远程医疗:结合智能硬件,实现非现场远程姿态监控
这些需求推动了基于计算机视觉的智能姿态识别技术的发展。
3. 相关工作及技术选型
- 传统方法:加速度计传感器、压力传感器,局限于硬件