1. 引言
包裹分拣是现代物流行业中的核心环节。准确、高效的包裹识别与分类直接影响物流速度和客户体验。传统人工分拣效率低、误差大,基于深度学习的目标检测方法则能极大提升分拣的智能化水平。
本文结合深度学习最新的目标检测算法YOLOv10,利用Pascal VOC格式数据集,详细讲解如何构建一个高效的包裹分拣系统,并开发一个简洁易用的图形用户界面(GUI),帮助非技术人员也能轻松使用该系统。
2. 项目背景与意义
- 物流自动化需求强烈:电商的高速发展带来包裹数量的爆炸式增长,传统人工分拣难以应对。
- 图像识别与目标检测技术成熟:深度学习尤其是YOLO系列算法具备实时、高精度的特点,适合工业应用。
- 用户友好界面推动落地:将深度学习模型与UI结合,降低使用门槛,推广智能物流应用。
3. 数据集介绍
3.1 数据集格式
本项目采用Pascal VOC格式,广泛使用于目标检测任务,数据结构如下:
- Annotations