基于深度学习的手势识别系统:Fist、Palm和Thumbs Up分类

摘要

手势识别是人机交互领域的重要研究方向,具有广泛的应用前景。本文提出了一种基于深度学习的手势识别系统,专注于识别三种基本手势:拳头(fist)、手掌(palm)和点赞(thumbs up)。系统采用改进的YOLOv5模型进行实时手势检测,并结合自定义卷积神经网络进行精细分类。我们整合了EgoHands和HaGRID两个公开数据集,构建了包含超过50,000张图像的综合训练集。实验结果表明,我们的系统在测试集上达到了96.7%的准确率,且能够在普通消费级硬件上实现实时处理(30FPS)。本文详细介绍了数据预处理、模型架构、训练策略以及基于PyQt5的用户界面实现,并提供了完整的代码实现。

关键词:手势识别;深度学习;YOLOv5;EgoHands;HaGRID;人机交互

1. 引言

手势识别技术作为人机交互的重要分支,近年来随着计算机视觉和深度学习的发展取得了显著进展。与传统的基于穿戴设备的手势识别相比,基于视觉的方法具有非接触、低成本和高可用性等优势,使其在智能家居、虚拟现实、医疗辅助和车载系统等领域展现出广阔的应用前景。

本文聚焦于三种基础但极具代表性的手势:拳头(fist)、手掌(palm)和点赞(thumbs up)。这些手势在日常交流中频繁使用,具有明确的语义含义。拳头通常表示力量或确认,手掌可用于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值