1. 引言
在当今社会,安全问题日益受到重视,入侵检测系统作为安防领域的重要组成部分,正在经历从传统方法向深度学习技术的转变。本文将详细介绍如何使用YOLOv12算法构建一个完整的入侵检测系统,包括自定义CCTV数据集的准备、模型训练、性能优化以及用户界面开发。
入侵检测系统的主要目标是识别监控视频中的可疑人员或行为,及时发出警报。传统的基于运动检测或背景减除的方法在复杂场景下表现不佳,而基于深度学习的解决方案,特别是YOLO(You Only Look Once)系列算法,因其出色的实时性能和检测精度,成为入侵检测领域的首选。
YOLOv12作为YOLO系列的最新演进版本,在保持高速度的同时进一步提升了检测精度。本文将带领读者从零开始构建一个完整的入侵检测系统,包括数据处理、模型训练、性能评估和用户界面开发等全流程。
2. 相关工作与技术背景
2.1 入侵检测技术的发展
入侵检测技术经历了多个发展阶段:
- 基于规则的方法:早期系统依赖于预设规则,如运动区域大小、移动速度阈值等。
- 传统机器学习方法:使用特征提取(如HOG、LBP)结合分类器(如SVM)。
- 深度学习方法:特别是基于CN