1. 引言
跌倒检测是计算机视觉和医疗健康领域的重要研究方向,特别对于老年人和高危职业人群的安全监护具有重要意义。本文将详细介绍如何使用YOLOv12算法构建一个完整的跌倒检测系统,包括UR Fall Detection数据集的处理、模型训练优化、性能评估以及用户界面开发。
跌倒事故可能导致严重后果,特别是对老年人群体。据统计,65岁以上老年人中约有1/3每年至少跌倒一次,其中约10%-20%的跌倒会导致严重伤害。实时准确的跌倒检测系统可以显著减少响应时间,提高救援效率。
基于深度学习的跌倒检测系统相比传统方法(如穿戴式设备、基于阈值的方法)具有明显优势:
- 非接触式监测,用户接受度高
- 可同时监控多个人
- 能够区分跌倒与其他类似动作(如蹲下、坐下)
- 可集成到现有监控系统中
2. 相关工作与技术背景
2.1 跌倒检测技术发展
跌倒检测技术主要经历了三个阶段:
-
基于穿戴式传感器的方法:
- 使用加速度计、陀螺仪等
- 缺点:需要用户佩戴设备,舒适性差
-
基于环境传感器的方法&#x