基于YOLOv12的跌倒检测系统:从UR Fall Detection数据集到UI界面实现

1. 引言

跌倒检测是计算机视觉和医疗健康领域的重要研究方向,特别对于老年人和高危职业人群的安全监护具有重要意义。本文将详细介绍如何使用YOLOv12算法构建一个完整的跌倒检测系统,包括UR Fall Detection数据集的处理、模型训练优化、性能评估以及用户界面开发。

跌倒事故可能导致严重后果,特别是对老年人群体。据统计,65岁以上老年人中约有1/3每年至少跌倒一次,其中约10%-20%的跌倒会导致严重伤害。实时准确的跌倒检测系统可以显著减少响应时间,提高救援效率。

基于深度学习的跌倒检测系统相比传统方法(如穿戴式设备、基于阈值的方法)具有明显优势:

  • 非接触式监测,用户接受度高
  • 可同时监控多个人
  • 能够区分跌倒与其他类似动作(如蹲下、坐下)
  • 可集成到现有监控系统中

2. 相关工作与技术背景

2.1 跌倒检测技术发展

跌倒检测技术主要经历了三个阶段:

  1. 基于穿戴式传感器的方法

    • 使用加速度计、陀螺仪等
    • 缺点:需要用户佩戴设备,舒适性差
  2. 基于环境传感器的方法&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值