基于YOLOv12的人群密度分析与UI界面实现——以上海科技大学人群数据集为例

1. 引言

人群密度分析是计算机视觉领域的一个重要研究方向,在公共安全管理、城市规划、交通管理等领域有着广泛应用。随着深度学习技术的发展,基于深度学习的人群密度分析方法取得了显著进展。本文将详细介绍如何使用YOLOv12模型在上海科技大学人群数据集(ShanghaiTech Crowd Dataset)上实现人群密度分析,并构建一个完整的UI界面系统。

2. 相关工作与数据集介绍

2.1 人群密度分析研究现状

人群密度分析主要解决以下问题:

  1. 人群计数:估计图像或视频中的人数
  2. 密度图生成:生成反映人群分布的热力图
  3. 异常检测:识别人群中异常行为或聚集情况

传统方法主要基于特征提取和回归模型,而现代深度学习方法则采用端到端的训练方式,显著提高了准确率。

2.2 ShanghaiTech Crowd Dataset数据集

上海科技大学人群数据集是一个广泛使用的人群分析基准数据集,包含1198张标注图像和330,165个标注头部,分为两部分:

  • Part_A:482张图像,取自互联网,场景多样
  • Pa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值