1. 引言
人群密度分析是计算机视觉领域的一个重要研究方向,在公共安全管理、城市规划、交通管理等领域有着广泛应用。随着深度学习技术的发展,基于深度学习的人群密度分析方法取得了显著进展。本文将详细介绍如何使用YOLOv12模型在上海科技大学人群数据集(ShanghaiTech Crowd Dataset)上实现人群密度分析,并构建一个完整的UI界面系统。
2. 相关工作与数据集介绍
2.1 人群密度分析研究现状
人群密度分析主要解决以下问题:
- 人群计数:估计图像或视频中的人数
- 密度图生成:生成反映人群分布的热力图
- 异常检测:识别人群中异常行为或聚集情况
传统方法主要基于特征提取和回归模型,而现代深度学习方法则采用端到端的训练方式,显著提高了准确率。
2.2 ShanghaiTech Crowd Dataset数据集
上海科技大学人群数据集是一个广泛使用的人群分析基准数据集,包含1198张标注图像和330,165个标注头部,分为两部分:
- Part_A:482张图像,取自互联网,场景多样
- Pa