摘要
手势识别作为人机交互领域的重要研究方向,近年来随着深度学习技术的发展取得了显著进展。本文将详细介绍基于YOLOv12的手势识别系统的完整实现,包括算法原理、数据集处理、模型训练以及可视化界面的开发。通过结合YOLOv12这一先进的目标检测算法,我们构建了一个能够准确识别静态和动态手势的完整系统,为自然、直观的人机交互提供了可行的技术方案。
1. 引言
1.1 研究背景与意义
手势是人类最自然的交流方式之一,在人际沟通中扮演着重要角色。随着计算机技术的飞速发展,如何让计算机理解人类的手势指令成为了人机交互研究的热点问题。手势识别技术允许用户通过简单的手部动作与机器进行交互,无需接触物理设备,这种自然的交互方式在虚拟现实、智能家居、医疗康复、汽车电子等领域具有广阔的应用前景。
传统的基于传感器的手势识别方法需要用户佩戴专用设备,限制了其应用范围。而基于计算机视觉的手势识别方法则通过摄像头采集手部图像,利用图像处理和模式识别技术解析手势含义,具有非接触、成本低、易部署等优势。近年来,深度学习技术的突破性进展,特别是卷积神经网络(CNN)在图像识别领域的成功应用,为基于视觉的手势识别提供了新的技术路径。
1.2 YOLOv12在手势识别中的优势
YOLO(You Only Look Once)系列算法作为单阶段目标检测的代表,以其高效的检测速度和良好的准确率受到了广泛关注。YOLOv12作为该系列的最新版本,在检测精度和速度之间实现了更好的平衡,特别适合实时手势识别应用。相比于两阶段检测算法,YOLOv12的主要优势包括:
-
端到端检测:将目标检测视为回归问题,直接在单个网络
订阅专栏 解锁全文
331

被折叠的 条评论
为什么被折叠?



