摘要
随着公共安全需求的日益增长,智能视频监控系统中的遗留物检测技术变得尤为重要。本文详细介绍了一种基于YOLOv12深度学习算法的公共场所遗留物检测系统,包含完整的算法原理分析、数据集构建方法、模型训练策略以及基于PyQt的图形用户界面开发。实验结果表明,本系统在多个测试场景下均能达到较高的检测精度和实时性能,为公共安全监控提供了有效的技术解决方案。
1. 引言
1.1 研究背景与意义
在机场、火车站、地铁站等公共场所,行李、包裹等物品的遗留可能构成严重的安全隐患。传统的人工监控方式存在效率低、易疲劳、漏检率高等问题。基于计算机视觉的自动遗留物检测技术能够7×24小时不间断工作,及时发现异常情况并发出警报,极大地提升了公共安全水平。
1.2 技术挑战
遗留物检测面临诸多技术挑战:
-
场景复杂性:公共场所光照变化、遮挡、人群密集
-
目标多样性:遗留物形状、大小、颜色各异
-
实时性要求:需要快速响应以确保及时处理
-
误报控制:需区分正常放置物品与真正遗留物
1.3 本文贡献
本文的主要贡献包括:
-
提出了基于YOLOv12的遗留物检测算法
-
构建了专用的遗留物检测数据集
-
开发了完整的图形用户界面系统
-
提供了完整的代码实现和性能评估
订阅专栏 解锁全文
2588

被折叠的 条评论
为什么被折叠?



