基于YOLOv12的公共场所遗留物检测系统:从算法原理到完整实现

摘要

随着公共安全需求的日益增长,智能视频监控系统中的遗留物检测技术变得尤为重要。本文详细介绍了一种基于YOLOv12深度学习算法的公共场所遗留物检测系统,包含完整的算法原理分析、数据集构建方法、模型训练策略以及基于PyQt的图形用户界面开发。实验结果表明,本系统在多个测试场景下均能达到较高的检测精度和实时性能,为公共安全监控提供了有效的技术解决方案。

1. 引言

1.1 研究背景与意义

在机场、火车站、地铁站等公共场所,行李、包裹等物品的遗留可能构成严重的安全隐患。传统的人工监控方式存在效率低、易疲劳、漏检率高等问题。基于计算机视觉的自动遗留物检测技术能够7×24小时不间断工作,及时发现异常情况并发出警报,极大地提升了公共安全水平。

1.2 技术挑战

遗留物检测面临诸多技术挑战:

  • 场景复杂性:公共场所光照变化、遮挡、人群密集

  • 目标多样性:遗留物形状、大小、颜色各异

  • 实时性要求:需要快速响应以确保及时处理

  • 误报控制:需区分正常放置物品与真正遗留物

1.3 本文贡献

本文的主要贡献包括:

  1. 提出了基于YOLOv12的遗留物检测算法

  2. 构建了专用的遗留物检测数据集

  3. 开发了完整的图形用户界面系统

  4. 提供了完整的代码实现和性能评估

2. 相关工作

2.1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值