R语言入门(15)_读取文件(read)

这篇博客介绍了R语言中读取文件的方法,包括使用`read.table()`读取纯文本和CSV文件,设置工作路径,使用`head()`查看数据前几行,以及`readHTMLTable()`等函数读取非文本文件。此外,还讨论了如何从网络、压缩包、剪贴板以及处理其他复杂格式文件的技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、read.table() 读取工作路径下的纯文本文件(.txt)(.csv)

1、工作路径的设置

2、head函数——只显示数据前几行

3、read.table()的其他一些参数

二、与read.table相类似的函数

三、read.table()读取网络上的文本文件

三、读取非文本文件

1)XML包—— readHTMLTable函数

2)foreign包中的函数

3)将文件格式转换成会读取的方式,或RSiteSearch函数搜索R中可用的包

四、读取剪贴板上的数据

五、直接读取压缩包文件

六、其他复杂格式文件读取


一、read.table() 读取纯文本文件(.txt)(.csv)

1、工作路径的设置

注意确保文件在工作路径下,可以将文件拖拽到工作路径下,也可以将工作路径修改到文件下。 

> ?read.table
> getwd()
[1] "C:/Users/Administrator/Documents"
> setwd("C:/Users/Administrator/Desktop/R/RData")
> read.table("input.txt")
    Ozone Solar.R Wind Temp Month Day
1      41     190  7.4   67     5   1
2      36     118  8.0   72     5   2
3      12     149 12.6   74     5   3
4      18     313 11.5   62     5   4
5      NA      NA 14.3   56     5   5
6      28      NA 14.9   66     5   6
7      23     299  8.6   65     5   7
8      19      99 13.8   59     5   8
9       8      19 20.1   61     5   9
10     NA     194  8.6   69     5  10
11      7      NA  6.9   74     5  11
12     16     256  9.7   69     5  12
13     11     290  9.2   66     5  13
14     14     274 10.9   68     5  14
15     18      65 13.2   58     5  15
16     14     334 11.5   64     5  16
17     34     307 12.0   66     5  17
18      6      78 18.4   57     5  18
19     30     322 11.5   68     5  19
20     11      44  9.7   62     5  20
21      1       8  9.7   59     5  21
22     11     320 16.6   73     5  22
23      4      25  9.7   61     5  23
24     32      92 12.0   61     5  24
25     NA      66 16.6   57     5  25
26     NA     266 14.9   58     5  26
27     NA      NA  8.0   57     5  27
28     23      13 12.0   67     5  28
29     45     252 14.9   81     5  29
30    115     223  5.7   79     5  30
31     37     279  7.4   76     5  31
32     NA     286  8.6   78     6   1
33     NA     287  9.7   74     6   2
34     NA     242 16.1   67     6   3
35     NA     186  9.2   84     6   4
36     NA     220  8.6   85     6   5
37     NA     264 14.3   79     6   6
38     29     127  9.7   82     6   7
39     NA     273  6.9   87     6   8
40     71     291 13.8   90     6   9
41     39     323 11.5   87     6  10
42     NA     259 10.9   93     6  11
43     NA     250  9.2   92     6  12
44     23     148  8.0   82     6  13
45     NA     332 13.8   80     6  14
46     NA     322 11.5   79     6  15
47     21     191 14.9   77     6  16
48     37     284 20.7   72     6  17
49     20      37  9.2   65     6  18
50     12     120 11.5   73     6  19
51     13     137 10.3   76     6  20
52     NA     150  6.3   77     6  21
53     NA      59  1.7   76     6  22
54     NA      91  4.6   76     6  23
55     NA     250  6.3   76     6  24
56     NA     135  8.0   75     6  25
57     NA     127  8.0   78     6  26
58     NA      47 10.3   73     6  27
59     NA      98 11.5   80     6  28
60     NA      31 14.9   77     6  29
61     NA     138  8.0   83     6  30
62    135     269  4.1   84     7   1
63     49     248  9.2   85     7   2
64     32     236  9.2   81     7   3
65     NA     101 10.9   84     7   4
66     64     175  4.6   83     7   5
67     40     314 10.9   83     7   6
68     77     276  5.1   88     7   7
69     97     267  6.3   92     7   8
70     97     272  5.7   92     7   9
71     85     175  7.4   89     7  10
72     NA     139  8.6   82     7  11
73     10     264 14.3   73     7  12
74     27     175 14.9   81     7  13
75     NA     291 14.9   91     7  14
76      7      48 14.3   80     7  15
77     48     260  6.9   81     7  16
78     35     274 10.3   82     7  17
79     61     285  6.3   84     7  18
80     79     187  5.1   87     7  19
81     63     220 11.5   85     7  20
82     16       7  6.9   74     7  21
83     NA     258  9.7   81     7  22
84     NA     295 11.5   82     7  23
85     80     294  8.6   86     7  24
86    108     223  8.0   85     7  25
87     20      81  8.6   82     7  26
88     52      82 12.0   86     7  27
89     82     213  7.4   88     7  28
90     50     275  7.4   86     7  29
91     64     253  7.4   83     7  30
92     59     254  9.2   81     7  31
93     39      83  6.9   81     8   1
94      9      24 13.8   81     8   2
95     16      77  7.4   82     8   3
96     78      NA  6.9   86     8   4
97     35      NA  7.4   85     8   5
98     66      NA  4.6   87     8   6
99    122     255  4.0   89     8   7
100    89     229 10.3   90     8   8
101   110     207  8.0   90     8   9
102    NA     222  8.6   92     8  10
103    NA     137 11.5   86     8  11
104    44     192 11.5   86     8  12
105    28     273 11.5   82     8  13
106    65     157  9.7   80     8  14
107    NA      64 11.5   79     8  15
108    22      71 10.3   77     8  16
109    59      51  6.3   79     8  17
110    23     115  7.4   76     8  18
111    31     244 10.9   78     8  19
112    44     190 10.3   78     8  20
113    21     259 15.5   77     8  21
114     9      36 14.3   72     8  22
115    NA     255 12.6   75     8  23
116    45     212  9.7   79     8  24
117   168     238  3.4   81     8  25
118    73     215  8.0   86     8  26
119    NA     153  5.7   88     8  27
120    76     203  9.7   97     8  28
121   118     225  2.3   94     8  29
122    84     237  6.3   96     8  30
123    85     188  6.3   94     8  31
124    96     167  6.9   91     9   1
125    78     197  5.1   92     9   2
126    73     183  2
### 使用 `read.table` 函数读取 CSV 文件 在 R 中,可以使用 `read.table` 函数来读取 CSV 文件。此函数非常灵活并允许指定多个参数以适应不同类型的输入文件[^1]。 #### 基本语法 以下是 `read.table` 的基本用法: ```r data <- read.table(file = "path/to/file.csv", header = TRUE, sep = ",", stringsAsFactors = FALSE) ``` - `file`: 表示要读取文件路径。 - `header`: 如果文件的第一行包含列名,则设置为 `TRUE`。 - `sep`: 定义字段之间的分隔符,在 CSV 文件中通常是逗号 `,`。 - `stringsAsFactors`: 控制字符向量是否应转换为因子,默认情况下建议设为 `FALSE` 以便更好地处理字符串数据。 #### 处理特定情况的例子 当遇到具有特殊编码或者含有缺失值标记的数据集时,可以通过调整额外选项来优化导入过程: ```r # 对于带有 BOM (Byte Order Mark) 或者其他编码方式的 UTF-8 文档 data_utf8 <- read.table("utf8_encoded_file.csv", fileEncoding="UTF-8-BOM", header=TRUE) # 当存在 NA 字符串替代品如 "?" data_na <- read.table("missing_values.csv", na.strings=c("NA","?"), header=TRUE) ``` 对于更复杂的场景,比如固定宽度格式(FWF),也可以通过提供每列的具体宽度列表来进行解析;而对于那些没有标准分隔符的情况,则可利用空白作为默认分割依据。 为了简化操作以及提高效率,通常推荐直接采用专门针对 CSV 文件设计的功能——即 `read.csv()` 和它的变体 `read.csv2()` ,它们本质上就是预配置好了一些常见参数后的快捷方式版本。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值