2024年第十四届MathorCup数学应用挑战赛D题思路分享(妈妈杯)

本文分享了MathorCup数学应用挑战赛D题的思路,探讨了如何运用量子计算中的QUBO模型解决矿山设备配置及运营优化问题。通过对挖掘机、矿车的使用寿命、成本、效率等因素建模,利用Kaiwu SDK求解,以实现最大利润和资源的最佳匹配。
摘要由CSDN通过智能技术生成

D题 量子计算在矿山设备配置及运营中的建模应用

随着智能技术的发展,智慧矿山的概念越来越受到重视。越来越多的设备供应商正在向智慧矿山整体解决方案供应商转型,是否具备提供整体解决方案的能力,也逐步成为众多矿山设备企业的核心竞争力。智慧矿山依靠先进的信息技术和设备自动化,实现矿山开采的高效、安全、环保和智能化。在智慧矿山的运营过程中,如何根据给定的工作量、机型斗容、效率、油耗和价格等因素,设计出一套最优的设备配置及运营方案,包括合理采购、分配和使用挖掘机、矿车等重要资源,是提高竞争力的关键。

QUBO ( Quadratic Unconstrained Binary Optimization,二次无约束二值优化)模型是一种适配相干伊辛机(Coherent Ising Machine,CIM)的模型,其形式为min xTQx, x{0,1}”,其中Q为n× n矩阵。本赛题主要基于智慧矿山设备配置及运营方案设计的场景,通过将问题建模为QUBO形式,使用Kaiwu SDK完成对问题的求解。Kaiwu SDK是一套基于相干伊辛机求解QUBO模型的软件开发套件,可以访问本链接来获取Kaiwu SDK。附件中提供了QUBO建模的参考资料(附件1)以及相关的应用案例论文(附件2,附件3)。

假定你们是智

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迎风斯黄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值