固体物理 2022.10.4

作业回顾:

1.详细步骤

2.物理列式计算


重点研究纵波,横波看作另一个晶向上的纵波,这样子可以简化我们的计算(重点研究沿着单原子链的方向)        

通过泰勒展开,我们可以得到

这个关系就像一个回复力的形式

 这是在a附近的一个微分量,所以前面的系数是一个常数

我们按照顺序来写,\small \beta_2-\beta_1=-\beta(u_n-u_{n-1})+\beta(u_{n+1}-u_n)=-\beta(u_{n+1}+u_{n-1}-2u_n)

然后就可以得到合力

 m是原子质量,对势能的二次微分量就是加速度

有了力学方程,我们就可以进行求解了

对于偏微分方程的求解,一个很重要的问题是我们如何确定边界条件?

《数学物理方法》介绍的是各种微分方程的求解方法

一个是求解的方式,另一个是如何进行边界条件界定,在这道题里面我们要引入一个思想:我们在考虑单原子链上的原子的时候,我们认为是相同的,没有特殊的Atom,在第七讲中,我们讲势能计算的时候,我们其实也遇到过边界的问题,边界的Atom和中心的Atom没有本质的区别,从纳米材料的角度来说,表面的原子数量比较多,然后就有很多奇特的物理化学性能,还有其他很多的光学性质,电学性质,在Atom数量比较大的时候,边界的占比就会减少,此时我们不是在纳米尺度,更多Atom是包括在中间的,我们在这个里面,用到的是一个周期性的边界条件,对于一维单原子链来书

我们可以有很多个Atom,不管怎么画,总有两个Atom在两个端点处,我们如何处理边界的两个Atom,有n个Atom就会有n个这样的力学方程

对于边界上的Atom,照我们原来的处理思路来说,需要额外研究一个新的情况,为了让情况简化,我们用了周期性的边界条件(实际上如果是一条单原子链的话,边界的两个肯定和中心的不一样),我们这里用了波恩-冯卡曼边界条件,当Atom数量比较多的时候,我们可以用周期性条件来近似(第一个近似是最近邻近似),第二个就是此处的周期性条件近似

如何理解周期性边界条件?

我们把边上的Atom,再往下画,画成一个圈,这个就是波恩-冯卡曼条件的精髓,把直线型画成闭环的圈型,如果用一个数学公式来理解的话,\small X_{n+N}=X_{n},n+N号原子核n号原子保持相同的运动

用了这个近似条件之后,我们就可以忽略一维单原子链,所有的Atom如果转了N个,就会回到原先的位置

我们如果直接求解的话,将会有N个方程

 二次微分方程具有一般性的求根公式,\small u_n=Ae^{i(nka-\omega t)},这就是一个波动方程的形式\small e^{i(kx-\omega t)}

k表示波向前运动的能力,x代表一维,wt是随着时间变化的一个情况

波不仅可以沿着X方向运动,有这个运动的快慢,同时随着时间也会有一个原地的一个振动,有两种引起波变化的值,一个是原地的振动,一个是向前的一个运动,都可以在我们这个公式中体现出来,整体上\small kx-\omega t都叫做相位(phase),我们把通解代入到微分方程中

代入之前观察一下性质 \small u_{n`}=u_n e^{ika(n`-n)} ,这是一个比较关键的性质

我们不用计算每一个Atom的变化,我们立足于整体,整个单原子链如何运动?

通过通用的求根公式,我们就可以把他们整个链接起来,形成一个有规律的整体

 在这个链里面,存在着一些原子,他们的位移变化是相同的,比如上面有N个Atom,如果满足上面的关系的话\small (n`-n)ka=2 \pi l

除了相同之外,我们还可以得到相反,如果是奇数倍的话

 可以看出来不同的Atom的位移之间,有一种从小到大,再从大到小的一种位移关系,就形成了一种类似波动的形式(位移在不同atom上形成一种波动形式,我们所说的格波,就描述的是这么一个形式)

Lattice Wave 形容的是位移在不同原子之间的一个关系,形成了一种类似波动的关系,每一个Atom的大小,都跟它们之间的距离有关系,这样的话就把所有的Atom链接起来了,这号原子的位移,要受到所有其他Atom对它的影响,只能符合这么i一个倍数关系

 这种波称为Lattice Wave,不是独立存在的,没有那么自由,受到周围原子的影响

位移呈现一种周期性变化,这种运动形式称为格波

K可以认为是格波的波矢,显示的是格波向前运动的能力,过了一会,可能就会翻转过来,呈现出一种运动的状态,这种翻转的速度,可以认为是由K来决定的

则有点像,我们看体育比赛的时候的观众所呈现出的波浪的欢呼

这是关于通解的一些性质,有了这些性质,就可以更好的去定义格波

        

 因为我们知道每个原子之间振幅的联系,公式左边是对时间进行微分,时间微分他会出来一个平方的形式,代入可以知道,左右两边都有一个\small u_n然后就可以消去,得到我们课件中的这个公式\small \omega^{2}=\frac{2\beta}{m}[1-cos(ka)](Sin项,利用欧拉公式,自然而然就消掉了)

这样的话,我们就得到了\small \omega ^{2}和K之间的关系,这里面的关系就是w和k之间的关系

\small \omega ~ k之间的关系,我们称之为色散关系(dispersion)

我们在固体物理里面,会有很多色散关系,每一种色散关系,都是\small \omega ~ k之间的关系,凡是有波的时候,都可能有色散关系(一维单原子链的振动,可以认为是机械波)

我们后面还会学到电磁波,在固体中电磁波的色散关系,以及核外电子的色散关系,能带关系

它代表的含义是,不同频率的波传播的速度和能力是不一样的

\small \omega波的频率\small k是波矢,代表了波向前传播的能力

一般情况下,振动比较慢的波,传的比较远,我们知道有短波电台和长波电台

一般短波电台传的不是特别好,需要在短的范围内进行使用,长波电台可能几千公里之外,还可以听到(长波传的比较远)短波和长波就是形容频率的,长波频率小,短波频率大,穿的近就是k比较大,传的远就是k比较小,他们之间满足一定的关系

色散关系会贯穿所有波,不管是声波,电磁波,还是核外电子的概率波,都有色散关系

我们对色散关系进行简单的化简,用二倍角公式进行化简

 这样的话,便于我们开方 

在实际的应用中\small \omega是不存在负的值的,数学中才可能看到负的频率

 这样的话,就是\small k=\frac{2\pi}{a},就是我们倒格空间的lattice contant(倒格空间的基矢),周期对于K来讲,是倒格空间的基矢大小,这是一个非常有意思的现象,到最后会发现,单原子链的振动,摆动是有周期的,K是有周期的,K是倒格空间的基矢大小

我们把图画出来

 这个是我们最后得到的w k的关系图,绝对值之后,我们把下面这一只反过来,在这个里面,我们已经知道K是有周期性的,\small \frac{2 \pi}{a},这样的话就可以定在一个周期里面,关于K=0对称,这样一个最简单的一个周期

这里面需要注意的是,实际在应用中,也没有这么绝对的定义

 对K的取值范围,这是书上严格的定义,这是我们关于画出色散关系的第一个周期

第一个周期,我们称之为第一布里渊区(画色散关系的第一个区间)

其实还可以画第二个,再往外画,就到第二布里渊区了

我们在这个里面,色散关系比较简单,所以只画第一布里渊区就可以了,半导体物理中能带关系也就是w和k之间的关系,因为w可以化作能量的形式\small h\omega=E,能带关系本质上还是w-k关系,对于电子的色散关系,只是把w换成了能量(第一布里渊区的图,需要大家会画)有些书里面也把这个k定义为q,\small k->q

因为用k更容易和波动方程连接起来(q其实也是k),q一般多用于空间的点阵中,如果说k是通用的,q就是空间点阵中的常用符号

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值