平面电磁波的极化,直线极化波,圆极化波,椭圆极化波

目录

直线极化波

圆极化

椭圆极化波


不失一般性,我们假设电场的形式

\vec E(x,t)=E_{1m} cos(\omega t -\beta x +\varphi_1) \vec e_y+E_{2m} cos(\omega t -\beta x +\varphi_2) \vec e_z

直线极化波

我们把

E_y(x,t)=E_{1m} cos(\omega t-\beta x+\varphi_1)

E_z(x,t)=E_{2m} cos(\omega t-\beta x+\varphi_2)

如果\varphi_1 = \varphi_2=\varphi

我们的合成波

\vec E(x,t)=(E_{1m} \vec e_y+E_{2m} \vec e_z)cos(\omega t- \beta x +\varphi)

如果我们在x=x_0 =0这个平面上

\vec E(x,t)=(E_{1m} \vec e_y+E_{2m} \vec e_z)cos(\omega t+\varphi)

我们假定\varphi =0

我们合成电场强度的大小和方向,大小是前两个振幅的几何平均值

我们看到在一个周期里面,合成电场强度,矢量末端的轨迹始终在一条轨迹运动

我们把这样的波称为直线极化波

圆极化

如果E_{1m}=E_{2m}=E_m,\varphi_1 -\varphi_2 =\pm \frac{\pi}{2}

E_y(x,t)=E_m cos(\omega t -\beta x +\frac{\pi}{2})

E_z(x,t)=E_m cos(\omega t -\beta x )

 圆极化波分为左旋和右旋

在一个周期里面,把空间的方位都可以扫描一遍,直线极化波,矢量末端轨迹在一条线上运动

椭圆极化波

在MATLAB中,你可以使用`ellipse`函数来绘制椭圆极化椭圆极化是一种无线电的传播模式,其中电场矢量在其路径上形成椭圆形轨迹。以下是绘制椭圆极化的基本步骤: 1. 首先,确保已经安装了MATLAB,并打开它。 2. 导入所需的库:虽然MATLAB本身自带很多绘图功能,但如果需要更精细的控制,可以导入`polar`或`surf`等特定绘图工具包。如果你只关心基本的极坐标绘图,这一步通常不需要。 ```matlab % 如果需要的话 % import polar toolbox if ~isToolboxAvailable('polar') error('Polar toolbox is required for this example.'); end ``` 3. 定义椭圆参数:椭圆的主轴长度、偏转角度、以及起始和结束角度(通常是0到2π或-π到π)。 ```matlab a = 5; % 主轴长度 b = a / sqrt(2); % 次轴长度 theta_start = 0; theta_end = 2 * pi; ``` 4. 创建极坐标网格:使用`polar`函数生成极坐标数据,然后转换为直角坐标。 ```matlab [theta, r] = polar(theta_start:pi/180:(theta_end - pi/180), [0 b a]); [X, Y] = pol2cart(theta, r); ``` 5. 绘制椭圆:使用`surf`或`surf(X,Y,r)`创建三维表面图形,展示椭圆极化。 ```matlab surf(X, Y, r) xlabel('\theta'); ylabel('r'); zlabel('E-field amplitude'); title('Elliptical Polarization Wave'); ``` 6. 调整颜色和样式(如果需要),最后显示图形。 ```matlab colormap(jet) % 或者选择其他颜色方案 view(3) % 展示三维效果 axis equal % 确保比例一致 grid on % 显示网格 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值