算法基础课:第四讲——数学知识

前言

在这里插入图片描述

质数

在所有严格大于1的自然数(所有<=1的自然数既不是质数也不是合数),如果只包含1和本身这两个约数,就被叫为质数,或者叫素数。

算法思想:

(1)质数的判定——试除法:复杂度O(√n)
朴素做法:循环2—n判断n % i 是否 == 0,若有等于0则不只包含1和本身这两个约数,不为质数。时间复杂度为 O(n),较高
若d能整除n 则 n|d 也能整除 n,所以我们只需枚举 d <= n|d,变形得 d <= √n。同时这里有很多不同的写法:sqrt(n):每次都需要执行函数影响速度 ;i * i <=n:存在溢出风险,所以我们采用 i <= n / i 的写法进行枚举
(2)分解质因数——试除法:
从小到大枚举 n 的所有因数,n当中最多只包含一个大于√n的质因子,同样只需要枚举到√n
(3)朴素筛质数:将1—n中所有数 x 的倍数删掉(用bool数组标记),筛完之后剩下的数就是质数,时间复杂度为O(nlogn)
(4)优化筛质数——埃氏筛:对于朴素筛质数,我们只需要将质数的倍数删掉即可,时间复杂度为O(nloglogn)
(5)线性筛:n 只会被他的最小质因子筛掉,若不是质数,则加入数组,从小到大枚举所有的质数,将质数的倍数筛掉即可,时间复杂度为O

模板:

// 试除法判断素数
bool is_prime(int n)
{
    if (n < 2) return false;
    for (int i = 2; i <= n / i; i ++)
        if (n % i == 0)
            return false;
    
    return true;
}

// 分解质因数
void divide(int n)
{
    for (int i = 2; i <= n / i; i ++)
        if (n % i == 0)
        {
            int s = 0;
            while (n % i == 0)
            {
                s ++;
                n /= i;
            }
            cout << i << ' ' << s << endl;
        }
    
    if (n > 1) cout << n << ' ' << 1 << endl;
    cout << endl;
}

// 朴素筛质数
void get_primes(int n)
{
    for (int i = 2; i <= n; i ++)
    {
        if (!st[i])
        {
            primes[cnt ++]  = i;
        }
        for (int j = i + i; j <= n; j += i) st[j] = true;   // i的倍数都标记true
    }
}

// 埃氏筛

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++)
    {
        if (!st[i])
        {
            primes[cnt ++]  = i;
			for (int j = i + i; j <= n; j += i) st[j] = true;   // i的倍数都标记true
        }

    }
}

// 线性筛
void get_primes(int n)
{
    for (int i = 2; i <= n; i ++)
    {
        if (!st[i]) primes[cnt ++] = i;
        for (int j = 0; primes[j] <= n / i; j ++)
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;  // primes[j] 一定是i的最小质因子
        }
    }
}

例题:

AcWing 866. 试除法判定质数
AcWing 867. 分解质因数
AcWing 868. 筛质数

AC代码:
// 试除法
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

bool is_prime(int n)
{
    if (n < 2) return false;
    for (int i = 2; i <= n / i; i ++)
        if (n % i == 0)
            return false;
    
    return true;
}

int main()
{
    int n;
    cin >> n;
    while (n --)
    {
        int a;
        cin >> a;
        if  (is_prime(a))   cout << "Yes" << endl;
        else    
            cout << "No" << endl;
    }
    return 0;
}


// 分解质因数
#include <iostream>
#include <algorithm>

using namespace std;

void divide(int n)
{
    for (int i = 2; i <= n / i; i ++)
        if (n % i == 0)
        {
            int s = 0;
            while (n % i == 0)
            {
                s ++;
                n /= i;
            }
            cout << i << ' ' << s << endl;
        }
    
    if (n > 1) cout << n << ' ' << 1 << endl;
    cout << endl;
}

int main()
{
    
    int n;
    cin >> n;
    while (n --)
    {
        int a;
        cin >> a;
        divide(a);
    }
}

// 朴素筛质数
#include <iostream>

using namespace std;

const int N = 1e6 + 5;

int cnt;
int primes[N];
bool st[N];

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++)
    {
        if (!st[i])
        {
            primes[cnt ++]  = i;
        }
        for (int j = i + i; j <= n; j += i) st[j] = true;   // i的倍数都标记true
    }
}

int main()
{
    int n;
    cin >> n;
    get_primes(n);
    
    cout << cnt << endl;
}





约数

算法思想:

(1)试除法求约数
(2)约数个数:int范围内约数最多一个数约数个数大概在1500个,根据算术基本定理:
由于 N = (p1x1)(P1x2)(p3x3)…(pkxk)
所以约数个数 = (x1 + 1)(x2 + 1)(x3 + 1)…(xk + 1)
例如 24 = 23 + 31,所以2可以取0,1,2,3,而3可以取0,1 所以24的约数共 4 x 2 = 8 种情况,分别为1,2,3,4,6,8,12,24
(3)约数之和:约数之和 = (p10+p11+p12+……+p1x1)……(pk0+pk1+pk2+……+pkx1)
(4)欧几里得算法:gcd(a, b) = gcd(b, a mod b)

模板:

// 欧几里得算法
int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

例题:

AcWing 869. 试除法求约数
AcWing 870. 约数个数
AcWing 871. 约数之和

AC代码:
// 试除法求约数
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

vector<int> get_divisiors(int n)
{
    vector<int> res;
    
    for (int i = 1; i <= n / i; i ++)
        if (n % i == 0)
        {
            res.push_back(i);
            if (i != n / i) res.push_back(n / i);   // n 可能是 i 的平方
        }
        
    sort(res.begin(), res.end());
    return res;
}

int main()
{
    int n;
    cin >> n;
    while (n --)
    {
        int a;
        cin >> a;
        auto res = get_divisiors(a);
        for (auto item : res)
            cout << item << ' ';
        cout << endl;
    }
    
    return 0;
}

// 约数个数
#include <iostream>
#include <cstring>
#include <algorithm>
#include <unordered_map>

using namespace std;

const int N = 105, MOD = 1e9 + 7;

int n;

typedef long long LL;

int main()
{
    cin >> n;
    
    unordered_map<int, int> hash;
    while (n --)
    {
        int x;
        cin >> x;
        
        // 分解质因子
        for (int i = 2; i <= x / i; i ++)
            while (x % i == 0)
            {
                hash[i] ++;         // 质因子的指数 + 1
                x /= i;
            }
        
        if (x > 1) hash[x] ++;
    }
    
    LL res = 1;
    for (auto item : hash)  res = res *(item.second + 1) % MOD;
    
    cout << res << endl;
    return 0;
}


// 约数之和
#include <iostream>
#include <cstring>
#include <algorithm>
#include <unordered_map>

using namespace std;

const int N = 105, MOD = 1e9 + 7;

int n;

typedef long long LL;

int main()
{
    cin >> n;
    
    unordered_map<int, int> hash;
    while (n --)
    {
        int x;
        cin >> x;
        
        // 分解质因子
        for (int i = 2; i <= x / i; i ++)
            while (x % i == 0)
            {
                hash[i] ++;         // 质因子的指数 + 1
                x /= i;
            }
        
        if (x > 1) hash[x] ++;
    }
    
    LL res = 1;
    for (auto item : hash)
    {
        int p = item.first, a = item.second;    // 取质因子和它的指数
        LL t = 1;       // 秦九韶算法
        while (a --)    t = (t * p + 1) % MOD;
        res = res * t % MOD;
    }
    
    cout << res << endl;
    return 0;
}


// 欧几里得算法
#include <iostream>

using namespace std;

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

int main()
{
    
    int n;
    cin >> n;
    while (n --)
    {
        int a, b;
        cin >> a >> b;
        cout << gcd(a, b) << endl; 
    }
    return 0;
}





欧拉函数

算法思想:

定义:

1∼N 中与 N 互质的数的个数被称为欧拉函数,记为 ϕ(N)。

若在算数基本定理中,N = p1a1p2a2…pmam,则:
ϕ(N) = N × (p1 − 1) / p1× (p2 − 1) / p2 × … × (pm − 1) / pm
即由由容斥原理可证
在这里插入图片描述
筛法 求欧拉函数:通过线性筛,求1~n的欧拉函数,证明略见模板
欧拉定理: 若 a 与 n 互质 => aφ(n) mod n == 1
费马小定理: 由欧拉定理推得,当 a 与 p 互质时, aφ(n) mod n = 1,若 n 为质数,则 φ(n) = n - 1,所以原公式推得 a n-1 mod n = 1

a n-1 mod n = 1 当 a 与 n 互质且 n 为质数

模板:

LL get_eulars(int n)
{
    phi[1] = 1;
    for (int i = 2; i <= n; i ++)
    {
        if (!st[i])
        {
            primes[cnt ++] = i;
            phi[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++)
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0)
            {
                phi[primes[j] * i] = phi[i] * primes[j];
                break;  // primes[j] 一定是i的最小质因子
            }
            phi[primes[j] * i] = phi[i] * (primes[j] - 1);
        }
    }
    LL res = 0;
    for (int i = 1; i <= n; i ++)    res += phi[i];
    return res;
}

例题:

AcWing 873. 欧拉函数
AcWing 874. 筛法求欧拉函数

AC代码:
// 求欧拉函数
#include <iostream>

using namespace std;

int main()
{
    
    int n;
    cin >> n;
    while (n --)
    {
        int x;
        cin >> x;
        
        
        int res = x;
        for (int i = 2; i <= x / i; i ++)
            if (x % i == 0)
            {
                res = res / i * (i - 1);
                while (x % i == 0)  x /= i;
            }
        
        if (x > 1) res = res / x * (x - 1);
        cout << res << endl;
    }
    

    return 0;
}

//	筛法求欧拉函数
#include <iostream>
#include <cstring>

using namespace std;

const int N = 1e6 + 5;

typedef long long LL;

bool st[N];
int primes[N], cnt;
int phi[N];

LL get_eulars(int n)
{
    phi[1] = 1;
    for (int i = 2; i <= n; i ++)
    {
        if (!st[i])
        {
            primes[cnt ++] = i;
            phi[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++)
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0)
            {
                phi[primes[j] * i] = phi[i] * primes[j];
                break;  // primes[j] 一定是i的最小质因子
            }
            phi[primes[j] * i] = phi[i] * (primes[j] - 1);
        }
    }
    
    LL res = 0;
    for (int i = 1; i <= n; i ++)    res += phi[i];
    return res;
    
}

int main()
{
    int n;
    cin >> n;
    
    cout << get_eulars(n) << endl;
    
    return 0;
}




快速幂

算法思想:

在 O(log k) 复杂度求出 ak mod p 的结果,其中 1 <= a,p,k <= 109
朴素做法: k 次循环累乘,时间复杂度为O(k)太慢
快速幂: 先对a的二的幂的次数进行预处理,再将k转为二进制表示,分解出2的幂的和求解
在这里插入图片描述

模板:

LL qmi(int a, int k, int p)
{
    int res = 1;
    
    while (k)   
    {
        if (k & 1)  res = LL(res) * a % p;  // 如果 k 的二进制表示最后一位是 1
        k >>= 1;    // 不管是不是 1 都要右移
        a = LL(a) * a % p;  // 不管是不是 1 都要平方,只有if成立才用到
    }
    return res;
}

例题:

AcWing 875. 快速幂

AC代码:
#include <iostream>

using namespace std;

const int N = 2e9 + 5;
typedef long long LL;

LL qmi(int a, int k, int p)
{
    int res = 1;
    
    while (k)   
    {
        if (k & 1)  res = LL(res) * a % p;  // 如果 k 的二进制表示最后一位是 1
        k >>= 1;    // 不管是不是 1 都要右移
        a = LL(a) * a % p;  // 不管是不是 1 都要平方,只有if成立才用到
    }
    return res;
}

int main()
{
    int n;
    cin >> n;
    while (n --)
    {
        int a, k, p;
        cin >> a >> k >> p;
        cout << qmi(a, k, p) << endl;
    }
    return 0;
}




扩展欧几里得算法

算法思想:

裴蜀定理: 有一对正整数a,b,那么一定存在非零整数x,y使得 ax + by = gcd(a,b)
扩展欧几里得算法: 求 x,y 使得 ax + by = gcd(a, b)

模板:

int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    
    int d = exgcd(b, a % b, y, x);

    y -= a / b * x;
}

例题:

AcWing 877. 扩展欧几里得算法

AC代码:
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    
    int d = exgcd(b, a % b, y, x);
    
    y -= a / b * x;
}


int main()
{
    cin.tie(0), cout.tie(0);
    ios::sync_with_stdio(false);
    
    int n;
    cin >> n;
    while (n --)
    {
        int a, b, x, y;
        cin >> a >> b;
    
        exgcd(a, b, x, y);
        cout << x << ' ' << y << endl;        
    }
    return 0;
}




中国剩余定理

算法思想:

在这里插入图片描述

例题:

AcWing 204. 表达整数的奇怪方式

AC代码:
#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;


LL exgcd(LL a, LL b, LL &x, LL &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }

    LL d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}


int main()
{
    int n;
    cin >> n;

    LL x = 0, m1, a1;
    cin >> m1 >> a1;
    for (int i = 0; i < n - 1; i ++ )
    {
        LL m2, a2;
        cin >> m2 >> a2;
        LL k1, k2;
        LL d = exgcd(m1, m2, k1, k2);
        if ((a2 - a1) % d)
        {
            x = -1;
            break;
        }

        k1 *= (a2 - a1) / d;
        k1 = (k1 % (m2 / d) + m2 / d) % (m2 / d);

        x = k1 * m1 + a1;

        LL m = abs(m1 / d * m2);
        a1 = k1 * m1 + a1;
        m1 = m;
    }

    if (x != -1) x = (a1 % m1 + m1) % m1;

    cout << x << endl;

    return 0;
}




高斯消元

算法思想:

系数矩阵进行初等行变换操作:
(1) 把某一行乘一个非零的数
(2) 交换某两行
(3) 把某行的若干倍加到另一行上去

例题:

AcWing 883. 高斯消元解线性方程组

AC代码:
#include <iostream>
#include <cstring>
#include <cmath>


using namespace std;

const int N = 110;
const double eps = 1e-6;    

int n;
double a[N][N];

int gauss()
{
    int c, r;       // c为列,r为行
    for (c = 0, r = 0; c < n; c ++)         // 从第 0 列开始
    {
        int t = r;          
        for (int i = r; i < n; i ++)
            if (fabs(a[i][c]) > fabs(a[t][c]))      // 找出该列最大的一行 t
                t = i;
                
        if (fabs(a[t][c]) < eps)  continue;
        
        for (int i = c; i <= n; i ++)   swap(a[t][i], a[r][i]);
        for (int i = n; i >= c; i --)   a[r][i] /= a[r][c];
        for (int i = r + 1; i < n; i ++)
            if (fabs(a[i][c]) > eps)
                for (int j = n; j >= c; j --)
                    a[i][j] -= a[r][j] * a[i][c];
                
        r ++;
    }
    
    if (r < n)
    {
        for (int i = r; i < n; i ++)
            if (fabs(a[i][n]) > eps)
                return 2;
        return 1;
    }
    
    for (int i = n - 1; i >= 0; i -- )
        for (int j = i + 1; j < n; j ++ )
            a[i][n] -= a[i][j] * a[j][n];
            
    return 0;   // 有唯一解
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++)
        for (int j = 0; j < n + 1; j ++)
            cin >> a[i][j];
    
    int t = gauss();
    
    if (t == 2) puts("No solution");
    else if (t == 1) puts("Infinite group solutions");
    else
    {
        for (int i = 0; i < n; i ++ )
        {
            if (fabs(a[i][n]) < eps) a[i][n] = 0;  // 去掉输出 -0.00 的情况
            printf("%.2lf\n", a[i][n]);
        }
    }

    
    return 0;

}




求组合数

算法思想:

组合数 I : 10w组询问,数据范围:1 <= b <= a <= 2000 :递归
组合数 II : 1w组询问,数据范围:1 <= b <= a <= 1e5 :逆元递归
组合数 II : 20组询问,数据范围:1 <= b <= a <= 1e18 :卢卡斯定理
卢卡斯定理 :
组合数IV: 没有p : 高精度

在这里插入图片描述

例题:

AcWing 885. 求组合数 I
AcWing 886. 求组合数 II
AcWing 887. 求组合数 III
AcWing 888. 求组合数 IV

AC代码:
// 求组合数I
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 2010, MOD = 1e9 + 7;

int n, a, b;
int c[N][N];

void init()
{
    for (int i = 0; i < N; i ++)
        for (int j = 0; j <= i; j ++)
            if (!j) c[i][j] = 1;
            else    c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
}

int main()
{
    init();
    
    cin >> n;
    while (n --)
    {
        cin >> a >> b;        
        cout << c[a][b] << endl;
    }
    return 0;
}



// 求组合数II
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;
const int N = 100010, MOD = 1e9 + 7;

int fact[N], infact[N];

int qmi(int a, int k, int p)
{
    int res = 1;
    while (k)
    {
        if (k & 1)  res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

int main()
{
    fact[0] = infact[0] = 1;
    for (int i = 1; i < N; i ++)
    {
        fact[i] = (LL)fact[i - 1] * i % MOD;
        infact[i] = (LL)infact[i - 1] * qmi(i, MOD - 2, MOD) % MOD;
    }
    
    int n;
    cin >> n;
    while (n --)
    {
        int a, b;
        cin >> a >> b;
        printf("%d\n",(LL)fact[a] * infact[b] % MOD * infact[a - b] % MOD);
    }
    
    return 0;
}




// 求组合数III
#include <iostream>
#include <algorithm>
using namespace std;

typedef long long LL;

int p;

int qmi(int a, int k)
{
    int res = 1;
    while (k)
    {
        if (k & 1)  res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

int C(int a, int b)
{
    int res = 1;
    for (int i = 1, j = a; i <= b; i ++, j --)
    {
        res = (LL)res * j % p;
        res = (LL)res * qmi(i, p - 2) % p;

    }

    return res;
}

int lucas(LL a, LL b)
{
    if (a < p && b < p) return C(a, b);
    return (LL)C(a % p, b % p) * lucas(a / p, b / p) % p;
}

int main()
{
    int n;
    cin >> n;
    while (n --)
    {
        LL a, b;
        cin >> a >> b >> p;
        cout << lucas(a, b) << endl;
    }
    
    return 0;
}


// 求组合数IV
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>

using namespace std;

const int N = 5005;

int primes[N], cnt;
bool st[N];
int sum[N];


void get_primes(int n)
{
    for (int i = 2; i <= n; i ++)
    {
        if (!st[i]) primes[cnt ++] = i;
        for (int j = 0; primes[j] <= n / i; j ++)
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

int get(int n, int p)
{
    int res = 0;
    while (n)
    {
        res += n / p;
        n /= p;
    }
    return res;
}

vector<int> mul(vector<int> a, int b)
{
    vector<int> c;
    int t = 0;
    for (int i = 0; i < a.size(); i ++)
    {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }
    while (t)
    {
        c.push_back(t % 10);
        t /= 10;
    }
    return c;
}

int main()
{
    int a, b;
    cin >> a >> b;
    
    get_primes(a);
    
    for (int i = 0; i < cnt; i ++)
    {
        int p = primes[i];
        sum[i] = get(a, p) - get(b, p) - get(a - b, p);
    }
    
    vector<int> res;
    res.push_back(1);
    
    for (int i = 0; i < cnt; i ++)
        for (int j = 0; j < sum[i]; j ++)
            res = mul(res, primes[i]);
    
    
    for (int i = res.size() - 1; i >= 0; i --)
        cout << res[i];
        
    cout << endl;
    
    return 0;
}







容斥原理

算法思想:

在这里插入图片描述

例题:

AcWing 890. 能被整除的数

AC代码:
#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 20;

int p[N];


int main()
{
    int n, m;
    cin >> n >> m;

    for (int i = 0; i < m; i ++ ) cin >> p[i];

    int res = 0;
    for (int i = 1; i < 1 << m; i ++ )
    {
        int t = 1, s = 0;
        for (int j = 0; j < m; j ++ )
            if (i >> j & 1)
            {
                if ((LL)t * p[j] > n)
                {
                    t = -1;
                    break;
                }
                t *= p[j];
                s ++ ;
            }

        if (t != -1)
        {
            if (s % 2) res += n / t;
            else res -= n / t;
        }
    }

    cout << res << endl;

    return 0;
}






博弈论

算法思想:

NIM游戏
给定N堆物品,第i堆物品有Ai个。两名玩家轮流行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。取走最后一件物品者获胜。两人都采取最优策略,问先手是否必胜。

我们把这种游戏称为NIM博弈。把游戏过程中面临的状态称为局面。整局游戏第一个行动的称为先手,第二个行动的称为后手。若在某一局面下无论采取何种行动,都会输掉游戏,则称该局面必败。
所谓采取最优策略是指,若在某一局面下存在某种行动,使得行动后对面面临必败局面,则优先采取该行动。同时,这样的局面被称为必胜。我们讨论的博弈问题一般都只考虑理想情况,即两人均无失误,都采取最优策略行动时游戏的结果。
NIM博弈不存在平局,只有先手必胜和先手必败两种情况。

定理: NIM博弈先手必胜,当且仅当 A1 ^ A2 ^ … ^ An != 0

公平组合游戏ICG
若一个游戏满足:

  • 由两名玩家交替行动;
  • 在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关;
  • 不能行动的玩家判负;

则称该游戏为一个公平组合游戏。
NIM博弈属于公平组合游戏,但城建的棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不满足条件2和条件3。

有向图游戏
给定一个有向无环图,图中有一个唯一的起点,在起点上放有一枚棋子。两名玩家交替地把这枚棋子沿有向边进行移动,每次可以移动一步,无法移动者判负。该游戏被称为有向图游戏。
任何一个公平组合游戏都可以转化为有向图游戏。具体方法是,把每个局面看成图中的一个节点,并且从每个局面向沿着合法行动能够到达的下一个局面连有向边。

Mex运算
设S表示一个非负整数集合。定义mex(S)为求出不属于集合S的最小非负整数的运算,即:
mex(S) = min{x}, x属于自然数,且x不属于S

SG函数
在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1, y2, …, yk,定义SG(x)为x的后继节点y1, y2, …, yk 的SG函数值构成的集合再执行mex(S)运算的结果,即:
SG(x) = mex({SG(y1), SG(y2), …, SG(yk)})
特别地,整个有向图游戏G的SG函数值被定义为有向图游戏起点s的SG函数值,即SG(G) = SG(s)。

有向图游戏的和
设G1, G2, …, Gm 是m个有向图游戏。定义有向图游戏G,它的行动规则是任选某个有向图游戏Gi,并在Gi上行动一步。G被称为有向图游戏G1, G2, …, Gm的和。
有向图游戏的和的SG函数值等于它包含的各个子游戏SG函数值的异或和,即:
SG(G) = SG(G1) ^ SG(G2) ^ … ^ SG(Gm)

定理
有向图游戏的某个局面必胜,当且仅当该局面对应节点的SG函数值大于0。
有向图游戏的某个局面必败,当且仅当该局面对应节点的SG函数值等于0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值