Prototypical Contrastive Learning of Unsupervised Representations
http://arxiv.org/abs/2005.04966
原型对比学习PCL,一种无监督的表示学习方法,把对比学习和聚类联系起来。

先看图,尝试猜测文章的核心思想或者核心用途。蓝色圈翻译:细粒度原型(例如马和人);绿色圈翻译:粗粒度原型(如马);黄色箭头:实例对比学习;红色箭头:原型对比学习
绿色和蓝色圈表示外侧虚线圆的圆心,绿色大圈表示包含粗粒度原型的数据;蓝色圈内表示包含粗粒度原型和细粒度原型的数据。猜测文章就是要学习这种原型机制,使得对粗粒度数据进行一个细分。
摘要
在本文中,我们提出了原型对比学习 (PCL),这是一种无监督表示学习的新框架,它将数据的语义结构隐式编码到嵌入空间中。图 1 显示了 PCL 的图示。原型被定义为“一组语义相似实例的代表性嵌入”。我们为每个实例分配了几个不同粒度的原型,并构建了一个对比损失,与其他原型相比,它强制样本的嵌入与其相应的原型更相似。在实践中,我们可以通过在 embedding 上执行聚类来找到原型。
将原型对比学习表述为期望最大化 (EM) 算法, 其中,目标是找到最能描述数据分布的深度神经网络 (DNN) 的参数, 通过迭代近似和最大化对数似然函数。具体说来 我们将原型作为额外的潜在变量引入, 并通过执行 k-means 聚类来估计它们在 E 步中的概率。 在 M 步中,我们通过最小化我们提出的对比损失(即 ProtoNCE)来更新网络参数。 我们表明,最小化 ProtoNCE 等效于最大化估计的对数似然, 假设每个原型周围的数据分布是各向同性的 Gaussian 的。 在 EM 框架下, 广泛使用的实例判别任务可以解释为原型对比学习的一个特例, 其中,每个实例的原型是其增强特征,并且每个原型周围的高斯分布具有相同的固定方差。本文的贡献可以总结如下:
- 我们提出