[论文阅读]Can GNN be Good Adapter for LLMs?

Can GNN be Good Adapter for LLMs?

http://arxiv.org/abs/2402.12984

WWW '24: Proceedings of the ACM Web Conference 2024

研究背景和问题:

(1)实际应用场景和问题提出

大型语言模型(LLM)在自然语言处理(NLP)中取得了显著成效,但它们在处理图数据时存在局限。图数据广泛应用于社交网络、推荐系统等领域,然而,传统LLM在图数据任务(如节点分类、图分类)中表现较差。图神经网络(GNN)在处理图数据上表现优越,但缺乏与LLM的有效结合。本文提出将GNN作为适配器嵌入LLM中,提升LLM对图数据的处理能力。

(2)问题的研究意义

该研究能够弥补LLM在图数据处理上的不足,增强模型对图数据的理解能力,推动LLM在跨领域任务中的应用。

(3)问题的研究现状

目前已有一些研究尝试将GNN与LM结合(如GraphBERT),大多数方法仍将两者分开处理,未能实现紧密融合。现有一些方法如级联GNN-LM方法能够结合GNN和LM,但是计算开销太大;也有一些方法采用自监督GNN-LM的方法,但是GNN与LM结合不紧密;此外还有一些研究直接用LLM处理图数据,但是没有结合GNN。因此,如何将GNN有效地嵌入LLM,以提升其在图任务中的表现,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值