Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions
模型上下文协议 (MCP) 是一种标准化接口,旨在实现 AI 模型与外部工具和资源之间的无缝交互,打破数据孤岛,促进不同系统之间的互操作性。
2024年末,Anthropic推出了模型上下文协议(MCP),这是一个标准化人工智能工具交互的通用协议。 MCP受到语言服务器协议(LSP)(Gunasinghe and Marcus, 2021)的启发,为人工智能应用程序提供了一个灵活的框架,可以动态地与外部工具进行通信。 MCP允许人工智能代理根据任务上下文自主地发现、选择和协调工具,而不是依赖于预定义的工具映射。 它还支持人机交互机制,使用户能够根据需要注入数据或批准操作。 通过统一接口,MCP简化了人工智能应用程序的开发,并提高了其处理复杂工作流程的灵活性。 自发布以来,MCP已迅速从一个利基协议发展成为人工智能原生应用程序开发的关键基础。 一个蓬勃发展的生态系统已经出现,数千个社区驱动的MCP服务器使模型能够访问GitHub、Slack,甚至Blender等3D设计工具。 Cursor和Claude Desktop等工具展示了MCP客户端如何通过安装新服务器来扩展其功能,将开发工具、生产力平台和创意环境都转变为多模态人工智能代理。
尽管MCP被迅速采用,但其生态系统仍处于早期阶段,安全、工具可发现性和远程部署等关键领域缺乏全面的解决方案。 这些问题为进一步的研究和开发提供了尚未开发的机会。 尽管MCP在业界被广泛认可具有潜力,但在学术研究中尚未得到广泛分析。
这一研究空白促使了本文的撰写,本文首次分析了MCP生态系统,考察了其架构和工作流程,定义了MCP服务器的生命周期,并确定了每个阶段的潜在安全风险,例如安装程序欺骗和工具名称冲突。 通过这项研究,我们对MCP的当前现状进行了全面的探索,并提出了一个面向未来的愿景,该愿景突出了关键意义,概述了未来的研究方向,并解决了确保其可持续发展必须克服的挑战。
背景和动机
1.AI工具
在 MCP 引入之前,AI 应用依赖于各种方法,例如手动 API 连接、基于插件的接口和代理框架,来与外部工具交互。这些方法需要将每个外部服务与特定的 API 集成,从而导致复杂性增加和可扩展性有限。 MCP 通过提供一个标准化协议来解决这些挑战,该协议能够与多个工具进行无缝且灵活的交互。
手动API链接
在传统的实现中,开发人员必须为 AI 应用交互的每个工具或服务建立手动 API 连接。 此过程需要为每次集成进行自定义身份验证、数据转换和错误处理。 随着 API 数量的增加,维护负担变得非常显著,通常会导致紧密耦合且脆弱的系统,难以扩展或修改。 MCP 通过提供统一的接口消除了这种复杂性,允许 AI 模型动态地与多个工具连接,而无需自定义 API 连接。
标准化插件接口
为了降低手动连接的复杂性,基于插件的接口,例如 2023 年 11 月推出的 OpenAI ChatGPT 插件允许 AI 模型通过 OpenAPI 等标准化 API 模式连接到外部工具。 例如,在 OpenAI 插件生态系统中,像 Zapier 这样的插件允许模型执行预定义的操作,例如发送电子邮件或更新 CRM 记录。 但是,这些交互通常是单向的,无法维护状态或协调任务中的多个步骤。
新的LLM应用商店,例如字节跳动Coze和腾讯元气也已出现,它们提供了一个用于网络服务的插件商店。 虽然这些平台扩展了可用的工具选项,但它们也创建了孤立的生态系统,其中插件特定于平台,限制了跨平台兼容性,并需要重复的维护工作。 MCP脱颖而出,因为它具有开源和平台无关性,使AI应用程序能够与外部工具进行丰富的双向交互,从而促进复杂的工作流程。
AI智能体工具集成
像LangChain这样的AI智能体框架以及类似的工具编排框架的出现,为模型通过预定义接口调用外部工具提供了一种结构化的方法,从而提高了自动化和适应性。
但是集成和维护这些工具在很大程度上仍然是手动的,需要定制的实现,并且随着工具数量的增加,复杂性也会增加。
MCP通过提供标准化协议来简化此过程,该协议使AI智能体能够通过统一的接口无缝地调用、交互和链接多个工具。 这减少了手动配置并增强了任务灵活性,使智能体能够执行复杂的操作而无需大量的自定义集成。
RAG和向量数据库
上下文信息检索方法例如RAG,利用基于向量的搜索从数据库或知识库中检索相关知识,使模型能够用最新的信息补充响应。 虽然这种方法解决了知识截止问题并提高了模型精度,但它仅限于被动检索信息。 它本身并不允许模型执行主动操作,例如修改数据或触发工作流程。
例如,基于RAG的系统可以从产品文档数据库中检索相关部分,以协助客户支持AI。 但是,如果AI需要更新客户记录或将问题升级给人工支持,它就不能采取超出提供文本响应的行动。
MCP超越了被动信息检索,使AI模型能够主动与外部数据源和工具交互,在统一的工作流程中促进检索和行动。
2. 动机
由于其能够标准化AI模型与外部工具的交互、数据获取和操作执行方式,MCP已在AI社区迅速获得关注。 通过解决手动API连接、插件接口和代理框架的局限性,MCP有可能重新定义AI与工具的交互方式,并实现更自主、更智能的代理工作流程。 尽管MCP的采用率不断提高,潜力巨大,但它仍处于早期阶段,其不断发展的生态系统尚未完善。 许多关键方面,例如安全性和工具的可发现性,尚未得到充分解决,为未来的研究和改进留下了充足的空间。 此外,虽然MCP在业界已迅速普及,但在学术界仍未得到充分探索。
基于这一差距,本文首次分析了当前的MCP现状,考察了其新兴生态系统,并确定了潜在的安全风险。 此外,我们还概述了MCP未来发展的愿景,并强调了必须解决的关键挑战,以支持其长期成功。
MCP结构
1.核心组件
三个核心组件组成:MCP主机、MCP客户端和MCP服务器。 这些组件协同工作,以促进AI应用程序、外部工具和数据源之间的无缝通信,确保操作安全且得到妥善管理。在一个典型的工作流程中,用户向MCP客户端发送提示,客户端分析意图,通过MCP服务器选择合适的工具,并调用外部API来检索和处理所需信息,然后通知用户结果。
MCP主机
主机是一个AI应用程序,提供执行基于AI的任务的环境同时运行MCP客户端。
集成交互式工具和数据,以实现与外部服务的顺畅通信
例如用于 AI 辅助内容创作的 Claude Desktop,用于代码补全和软件开发的 AI 驱动的 IDE Cursor,以及充当自主系统以执行复杂任务的 AI 代理。 MCP 主机托管 MCP 客户端并确保与外部 MCP 服务器的通信。
MCP客户端
充当主机环境中的中介,管理 MCP 主机和一个或多个 MCP 服务器之间的通信。它向 MCP 服务器发起请求,查询可用功能,并检索描述服务器功能的响应。 这确保了主机与外部工具之间无缝交互。 除了管理请求和响应之外,MCP 客户端还会处理来自 MCP 服务器的通知,提供有关任务进度和系统状态的实时更新。 它还执行采样以收集有关工具使用和性能的数据,从而实现优化和知情的决策。 MCP 客户端通过传输层与 MCP 服务器通信,促进了安全可靠的数据交换以及主机与外部资源之间的顺畅交互。
MCP服务器
MCP 服务器使 MCP 主机和客户端能够访问外部系统并执行操作,提供三个核心功能:工具、资源和提示。
- 工具:启用外部操作。 工具允许 MCP 服务器调用外部服务和 API 以代表 AI 模型执行操作。 当客户端请求操作时,MCP 服务器会识别合适的工具,与服务交互,并返回结果。 例如,如果 AI 模型需要实时天气数据或情感分析,MCP 服务器将连接到相关的 API,检索数据并将其传递给主机。 与传统的函数调用需要多个步骤并将调用与执行分开不同,MCP服务器的工具通过允许模型根据上下文自主选择和调用合适的工具来简化此过程。 配置完成后,这些工具遵循标准化的供需模型,使其模块化、可重用且易于其他应用程序访问,从而提高系统效率和灵活性。
- 资源:向AI模型公开数据。 资源提供对MCP服务器可以向AI模型公开的结构化和非结构化数据集的访问。 这些数据集可能来自本地存储、数据库或云平台。 当AI模型请求特定数据时,MCP服务器将检索和处理相关信息,使模型能够做出数据驱动的决策。 例如,推荐系统可以访问客户互动日志,或者文档摘要任务可以查询文本存储库。
- 提示:用于工作流优化的可重用模板。 提示是MCP服务器生成和维护的预定义模板和工作流,用于优化AI响应和简化重复性任务。 它们确保响应的一致性并提高任务执行效率。 例如,客户支持聊天机器人可以使用提示模板来提供统一和准确的响应,而标注任务则可以依靠预定义的提示来保持数据标记的一致性。
2. 传输层和通信
传输层确保安全、双向通信,允许主机环境与外部系统之间进行实时交互和高效的数据交换。
传输层管理从客户端传输初始请求、交付详细说明可用功能的服务器响应以及交换通知以使客户端了解正在进行的更新。 MCP客户端和MCP服务器之间的通信遵循一个结构化过程,从客户端的初始请求查询服务器的功能开始。 服务器收到请求后,将以初始响应列出客户端可以利用的可用工具、资源和提示。 建立连接后,系统会持续交换通知,以确保服务器状态或更新的变化能够实时地传回客户端。 这种结构化的通信确保了高性能的交互,并使AI模型与外部资源保持同步,从而提高了AI应用程序的效率。
3.MCP服务器生命周期
三个关键阶段:创建、运行和更新。
MCP服务器包含几个确保平稳有效运行的关键组件。 元数据包含关于服务器的基本信息,例如其名称、版本和描述,允许客户端识别并与相应的服务器交互。 配置包括源代码、配置文件和清单,这些定义了服务器的操作参数、环境设置和安全策略。 工具列表存储可用工具的目录,详细说明其功能、输入输出格式和访问权限,确保适当的工具管理和安全性。 资源列表管理对外部数据源的访问,包括Web API、数据库和本地文件,指定允许的端点及其关联的权限。 最后,提示和模板包括预配置的任务模板和工作流程,这些提高了AI模型执行复杂操作的效率。 这些组件共同使MCP服务器能够为AI驱动的应用程序提供无缝的工具集成、数据检索和任务编排。
创建阶段:
服务器被注册、配置并准备运行。
涉及三个关键步骤。
服务器注册 为MCP服务器分配唯一的名称和标识,允许客户端发现并连接到相应的服务器实例。
安装程序部署 涉及安装MCP服务器及其关联组件,确保正确的配置文件、源代码和清单到位。
代码完整性验证 验证服务器代码库的完整性,以防止在服务器投入运行之前发生未经授权的修改或篡改。 成功完成创建阶段可确保MCP服务器能够处理请求并与外部工具和数据源安全地交互。
运行阶段
MCP服务器主动处理请求、执行工具调用并促进AI应用程序与外部资源之间无缝交互
工具执行 允许MCP服务器根据AI应用程序的请求调用相应的工具,确保所选工具执行其预定操作。
斜杠命令处理 使服务器能够解释和执行多个命令,包括通过用户界面或AI代理发出的命令,同时管理潜在的命令重叠以防止冲突。
沙箱机制 强制执行确保执行环境隔离且安全,防止未经授权的访问并降低潜在风险。 在整个运行阶段,MCP服务器保持稳定和受控的环境,实现可靠和安全的任务执行。
更新阶段
确保MCP服务器保持安全、最新并能够适应不断变化的需求。
三个关键任务。 授权管理 验证更新后访问权限是否仍然有效,防止更新后未经授权使用服务器资源。 版本控制 维持不同服务器版本之间的一致性,确保新的更新不会引入漏洞或冲突。 旧版本管理 禁用或删除过时的版本,以防止攻击者利用先前版本中的已知漏洞。
当前现状
MCP生态
官方SDK提供多种语言版本,包括TypeScript、Python、Java、Kotlin和C#,为开发人员在不同环境中实现MCP提供了多种选择。社区还贡献了许多简化MCP服务器开发的框架和实用程序。 诸如EasyMCP和FastMCP之类的工具提供了基于轻量级TypeScript的解决方案,用于快速构建MCP服务器,而FastAPI到MCP自动生成器则可以无缝地将FastAPI端点作为MCP工具公开。 对于更复杂的场景,Foxy Contexts提供了一个基于Golang的库来构建MCP服务器,而Higress MCP服务器托管则扩展了API网关(基于Envoy)来使用wasm插件托管MCP服务器。 诸如Mintlify、Speakeasy和Stainless之类的服务器生成和管理平台通过自动生成MCP服务器、提供精选的MCP服务器列表以及实现更快的部署和最少的 manual intervention 来进一步增强生态系统。 这些平台使组织能够快速创建和管理安全且文档齐全的MCP服务器。
具体用例
OpenAI在其Agent SDK中引入了MCP支持,使开发人员能够创建与外部工具无缝交互的AI代理。 在典型的工作流程中,开发人员使用Agent SDK定义需要调用外部工具的任务。 当AI代理遇到诸如从API检索数据或查询数据库之类的任务时,SDK会通过MCP服务器路由请求。 请求通过MCP协议传输,确保正确格式化并将实时响应传递给代理。 OpenAI计划将MCP集成到Responses API中,这将简化AI与工具之间的通信,允许像ChatGPT这样的AI模型动态地与工具交互,而无需额外的配置。 OpenAI的目标是将MCP支持扩展到ChatGPT桌面应用程序,使AI助手能够通过连接到远程MCP服务器来处理各种用户任务,进一步弥合AI模型和外部系统之间的差距。
Cursor 利用 MCP 通过启用 AI 驱动的代码助手来增强软件开发,从而实现复杂任务的自动化。 利用 MCP,Cursor 允许 AI 代理与外部 API 交互,访问代码库,并在集成开发环境中直接自动化工作流程。 当开发人员在 IDE 中发出命令时,AI 代理会评估是否需要外部工具。 如果需要,代理会向 MCP 服务器发送请求,服务器会识别合适的工具并处理任务,例如运行 API 测试、修改文件或分析代码。 然后将结果返回给代理以进行进一步操作。 此集成有助于自动化重复性任务,最大限度地减少错误并提高整体开发效率。 通过简化复杂流程,Cursor 提高了生产力和准确性,允许开发人员轻松执行多步骤操作。
通过引入远程 MCP 服务器托管,Cloudflare 在将 MCP 从本地部署模型转变为云托管架构方面发挥了关键作用。 此方法消除了与本地配置 MCP 服务器相关的复杂性,允许客户端无缝连接到安全的云托管 MCP 服务器。 工作流程始于 Cloudflare 在安全的云环境中托管 MCP 服务器,这些服务器可以通过经过身份验证的 API 调用访问。 AI 代理使用基于 OAuth 的身份验证向 Cloudflare MCP 服务器发起请求,确保只有授权实体才能访问服务器。 身份验证后,代理通过 MCP 服务器动态调用外部工具和 API,执行诸如数据检索、文档处理或 API 集成等任务。 此方法不仅降低了配置错误的风险,而且确保了 AI 驱动的跨分布式环境的工作流程的无缝执行。 此外,Cloudflare 的多租户架构允许多个用户安全地访问和管理他们自己的 MCP 实例,确保隔离并防止数据泄漏。 因此,Cloudflare 的解决方案通过实现企业级可扩展性和安全的跨设备互操作性来扩展 MCP 的功能。
安全和隐私分析
【后文中的安全隐患,大多都和传统网安关联很大,比如身份认证、冲突名称等内容,少部分才考虑到了作为MCP核心的LLM本身具有的容易被诱导的漏洞,这里的容易被诱导体现在对工具的调用上,如果恶意开发者公布了恶意的工具,还在工具描述中诱导LLM误判,任务该工具更值得使用,就容易导致更加严重的问题。】
MCP 服务器在其整个生命周期中都引入了各种安全风险。
1.创建阶段的安全风险
前文提到,MCP服务器的创建阶段包括注册服务器、部署安装程序和验证代码完整性。引出了三个关键的风险:
名称冲突:
当恶意实体注册的 MCP 服务器名称与合法服务器的名称相同或非常相似时,就会发生服务器名称冲突,从而在安装阶段欺骗用户。
MCP客户端主要依赖服务器的名称和描述来选择服务器,因此它们容易受到此类模仿攻击。 【给我的感觉就像是docker镜像库一样】
安装受损服务器后,它可能会误导人工智能代理和客户端调用恶意服务器,从而可能泄露敏感数据、执行未经授权的命令或中断工作流程。
例如,攻击者可以注册一个名为mcp-github的服务器,模仿合法的github-mcp服务器,从而拦截和操纵人工智能代理和可信服务之间的敏感交互。
虽然 MCP 目前主要在本地环境中运行,但未来在多租户环境中的采用会带来更多名称冲突的风险。 在这些情况下,多个组织或用户可能会注册名称相似的服务器,缺乏集中式命名控制会增加混淆和模仿攻击的可能性。 此外,随着MCP 市场增长以支持公共服务器列表,供应链攻击可能会成为一个关键问题,其中恶意服务器可以替换合法服务器。 为了减轻这些风险,未来的研究可以集中在建立严格的命名空间策略、实施加密服务器验证和设计基于声誉的信任系统以保护 MCP 服务器注册方面。
安装程序欺骗:
安装程序欺骗发生在攻击者分发修改后的 MCP 服务器安装程序时,这些安装程序在安装过程中会引入恶意代码或后门。 每个 MCP 服务器都需要一个唯一的配置,用户必须在客户端可以调用服务器之前在其本地环境中手动设置。 这种手动配置过程为技术水平较低的用户设置了障碍,促使非官方自动安装程序的出现,这些程序可以自动化设置过程。 如表3所示,Smithery-CLI、mcp-get和mcp-installer等工具简化了安装过程,使用户可以快速配置 MCP 服务器,而无需处理复杂的服务器设置。
但它们通过可能分发受损的软件包引入了新的攻击面。
由于这些非官方安装程序通常来自未经验证的存储库或社区驱动的平台,因此它们可能会无意中将用户暴露于安全风险,例如安装被篡改的服务器或配置错误的环境。 攻击者可以利用这些自动安装程序嵌入恶意软件,从而获得未经授权的访问权限,修改系统配置或创建持久性后门。
此外,大多数选择一键安装的用户很少检查底层代码中是否存在潜在的安全漏洞,这使得攻击者更容易在未被检测的情况下分发受损版本。 解决这些挑战需要为 MCP 服务器开发一个标准化的安全安装框架,强制执行软件包完整性检查,并建立基于声誉的信任机制来评估 MCP 生态系统中自动安装程序的可信度。
代码注入/后门:
当恶意代码在创建阶段偷偷嵌入到 MCP 服务器的代码库中时,就会发生代码注入攻击,这通常会绕过传统的安全检查。 它以服务器的源代码或配置文件为目标,嵌入隐藏的后门,即使在更新或安全补丁之后仍然存在。 这些后门允许攻击者秘密地控制服务器,从而执行诸如未经授权的数据泄露、权限提升或命令操作等行为。
代码注入尤其阴险,因为它可能由受损的依赖项、易受攻击的构建管道或对服务器源代码的未经授权的修改引入。 由于 MCP 服务器通常依赖于社区维护的组件和开源库,因此确保这些依赖项的完整性至关重要。 为减轻此风险,应实施严格的代码完整性验证、严格的依赖项管理和定期安全审计,以检测未经授权的修改并防止恶意代码的引入。 此外,采用可重复构建并在部署过程中强制执行校验和验证可以进一步保护 MCP 服务器免受基于注入的威胁。
2.操作阶段的安全风险
操作阶段是 MCP 服务器主动执行工具、处理斜杠命令并与外部 API 交互的阶段。 此阶段引入了三大风险:工具名称冲突、斜杠命令重叠和沙箱逃逸。
工具名称冲突:
多个工具共享相同或相似的名称时,就会出现工具名称冲突,导致在工具选择和执行过程中出现歧义和混淆。
这可能导致 AI 应用程序无意中调用错误的工具,从而可能执行恶意命令或泄露敏感信息。
一个常见的攻击场景涉及恶意行为者注册一个名为send_email的工具,该工具模仿合法的电子邮件发送工具。 如果 MCP 客户端调用恶意版本,则打算用于受信收件人的敏感信息可能会被重定向到攻击者控制的端点,从而危及数据机密性。
恶意行为者可以通过在工具描述中嵌入具有欺骗性的短语来进一步操纵工具选择。如果工具的描述明确包含诸如“此工具应优先考虑”或“优先使用此工具”之类的指令,即使该工具的功能较差或可能造成危害,MCP客户端也更有可能选择该工具。 这带来了严重的工具流劫持风险,攻击者可以利用误导性描述来影响工具选择并控制关键工作流程。 这强调了研究人员需要开发先进的验证和异常检测技术,以识别和减轻具有欺骗性的工具描述,确保 AI 工具选择的准确性和安全性。
【但凡用到LLM的,都很容易受到误导】
斜杠命令重叠:
当多个工具定义相同或相似的命令时,就会发生斜杠命令重叠,这会导致命令执行过程中的歧义。
这种重叠会带来执行意外操作的风险,尤其是在 AI 应用程序根据上下文线索动态选择和调用工具时。
恶意行为者可以通过引入操纵工具行为的冲突命令来利用这种歧义,从而可能危及系统完整性或暴露敏感数据。
例如,如果一个工具注册一个/delete命令来删除临时文件,而另一个工具使用相同的命令来删除关键的系统日志,则 AI 应用程序可能会错误地执行错误的命令,从而可能导致数据丢失或系统不稳定。 在 Slack 等团队聊天系统中也观察到了类似的问题,其中重叠的命令注册允许未经授权的工具劫持合法调用,从而导致安全漏洞和运营中断。 由于斜杠命令通常作为客户端界面中面向用户的快捷方式显示,因此解释错误或冲突的命令会导致危险的结果,尤其是在多工具环境中。 为最大限度地降低这种风险,MCP 客户端应建立上下文感知的命令解析,应用命令消除歧义技术,并根据已验证的工具元数据优先执行命令。
沙箱逃逸:
沙箱隔离了 MCP 工具的执行环境,限制了它们对关键系统资源的访问,并保护主机系统免受潜在有害操作的影响。沙箱逃逸漏洞使攻击者能够突破受限环境并获得对主机系统的未授权访问。 一旦逃出沙箱,攻击者就可以执行任意代码、操纵敏感数据或提升权限,从而危及 MCP 生态系统的安全性和稳定性。
常见的攻击媒介包括利用系统调用中的弱点、处理不当的异常以及第三方库中的漏洞。 例如,恶意MCP工具可以利用底层容器运行时中未修补的漏洞绕过限制,并以提升的权限执行命令。 同样,侧信道攻击可能允许攻击者提取敏感数据,从而破坏沙箱预期的隔离性。 检查MCP环境中真实的沙箱逃逸场景,可以为加强沙箱安全和防止未来漏洞利用提供宝贵的见解。
3. 更新阶段的安全风险
更新阶段涉及管理服务器版本、修改配置和调整访问控制。 此阶段引入了三个关键风险:更新后权限持久化、易受攻击版本的重新部署以及配置漂移。
更新后权限持久化:
指在MCP服务器更新后过时或已撤销的权限仍然处于活动状态,允许先前授权的用户或恶意行为者保留提升的权限。
此漏洞出现在诸如API密钥撤销或权限更改之类的权限修改在服务器更新后未正确同步或失效时。 如果这些过时的权限仍然存在,攻击者可能会利用它们来维持对敏感资源的未授权访问或执行恶意操作。
例如,在像GitHub或AWS这样的API驱动的环境中,当过时的OAuth令牌或IAM会话令牌在权限撤销后仍然有效时,已经观察到权限持久化现象。 同样,在MCP生态系统中,如果撤销的API密钥或修改后的角色配置在更新后没有立即失效,攻击者可以继续调用特权操作,这可能会危及系统的完整性。 实施严格的权限撤销策略,确保权限更改在所有服务器实例中一致传播,并为API密钥和会话令牌实现自动过期,对于降低权限持久化的可能性至关重要。 对权限修改进行全面的日志记录和审核,可以进一步增强可见性并帮助检测可能表明权限持久化存在的不一致性。
易受攻击版本的重新部署
MCP服务器是开源的,并且由个体开发者或社区贡献者维护,缺乏用于审核和强制执行安全更新的集中平台。 用户通常从GitHub、npm或PyPi等代码库下载MCP服务器包并在本地配置,通常没有正式的审查流程。 这种分散式模型增加了重新部署漏洞版本的风险,这可能是由于更新延迟、版本回滚或依赖未经验证的软件包源所致。
当用户更新MCP服务器时,他们可能会无意中回滚到旧的、易受攻击的版本,以解决兼容性问题或保持稳定性。 此外,非官方的自动安装程序,例如mcp-get和mcp-installer,它们简化了服务器安装,可能默认为缓存的或过时的版本,使系统暴露于先前已修补的漏洞。 由于这些工具通常优先考虑易用性而不是安全性,因此它们可能缺乏版本验证或未能通知用户有关关键更新。
由于MCP生态系统中的安全补丁依赖于社区驱动的维护,漏洞披露和补丁可用性之间存在延迟是很常见的。 不积极跟踪更新或安全公告的用户可能在不知情的情况下继续使用易受攻击的版本,从而为攻击者利用已知漏洞创造机会。
例如,攻击者可以利用过时的MCP服务器获得未经授权的访问权限或操纵服务器操作。 从研究的角度来看,分析MCP环境中的版本管理实践可以识别潜在的差距,并突出显示对自动化漏洞检测和缓解的需求。 另一方面,迫切需要建立一个具有标准化打包格式的官方包管理系统,以及一个中心服务器注册表,以方便安全发现和验证可用的MCP服务器。
配置漂移
随着时间的推移,系统配置中累积了意外更改,偏离了原始安全基线。 这些偏差通常是由于手动调整、忽略的更新或不同工具或用户进行的冲突修改造成的。
在MCP环境中,服务器通常由最终用户在本地配置和维护,这种不一致性会引入可利用的漏洞,并削弱整体安全态势。 随着远程MCP服务器支持的出现,例如Cloudflare托管的MCP环境,配置漂移变得更加令人担忧。 与本地MCP部署不同,在本地MCP部署中,配置问题可能只会影响单个用户的环境,而在远程或云端MCP服务器中的配置漂移会同时影响多个用户或组织。 多租户环境中的错误配置可能会暴露敏感数据,导致权限升级,或无意中授予恶意行为者比预期更广泛的访问权限。 解决此问题需要实施自动配置验证机制和定期一致性检查,以确保本地和远程 MCP 环境都符合安全基线配置。
讨论
带来了一系列挑战:
缺乏集中式安全监督。
身份验证和授权漏洞。
调试和监控机制不足。
维护多步骤、跨系统工作流程的一致性。
多租户环境中的可扩展性挑战。
将MCP嵌入智能环境中的挑战。 将MCP集成到智能环境(例如智能家居、工业物联网系统或企业自动化平台)中,会带来与实时响应、互操作性和安全性相关的独特挑战。 在这些环境中,MCP服务器必须处理来自多个传感器和设备的连续数据流,同时保持低延迟响应。 此外,确保AI代理和异构设备生态系统之间无缝交互通常需要定制的适配,从而增加了开发的复杂性。 智能环境中受损的MCP服务器可能导致对关键系统的未授权控制,从而威胁到安全性和数据完整性。
结论
本文对MCP生态系统全貌进行了首次全面分析,检查了它的架构、核心组件、操作流程和服务器生命周期阶段;探讨了它的采用、多样性和用例,同时识别了在创建、操作和更新阶段的潜在安全威胁;重点介绍了采用 MCP 所带来的影响和风险,并为利益相关者提出了切实可行的建议,以增强安全性和治理;概述了未来应对新兴风险和提高 MCP 弹性的研究方向。 随着 MCP 越来越受到 OpenAI 和 Cloudflare 等行业领导者的青睐,解决这些挑战对其长期成功以及实现与各种外部工具和服务的安全、高效交互至关重要。