1.显存问题
1. 大模型大概有多大,模型文件有多大?
大模型也分为不同的规格,一般模型的规格会体现在模型的名称上,例如 LLaMA2-13b,13b 就是其模型参数量的大小,意思是 130亿的参数量。
大模型的文件大小与其参数量有关,通常大模型是以半精度存储的, Xb 的模型文件大概是 2X GB多一些,例如 13b 的模型文件大小大约是 27GB 左右。
2. 能否用4 * v100 32G训练vicuna 65b?
一般来说推理模型需要的显存约等于模型文件大小,全参训练需要的显存约为推理所需显存的三倍到四倍,正常来说,在不量化的情况下4张 v100 显卡推理 65b 的模型都会有一些吃力,无法进行训练,需要通过 LoRA 或者****QLoRA 采用低秩分解的方式才可以训练。
补充:如何评估微调所需显存
现有的大模型 默认的是16bits精度,当模型的参数量大小为 x B ,推理所需的显存一般是 x 的 2 倍。对于全参数微调所需显存,目前来说普遍的说法是约为推理所需显存的 3-4 倍(包括模型推理(1倍)、梯度(1倍)、优化器状态(AdamW 2倍,SGD 1倍),也就是 x 的 6-8 倍。但是从实际测试来看的话,全参数微调所需显存约为推理所需显存的10 倍左右,也即 x 的20倍左右。