安装CUDA
首先打开cmd终端,输入下面命令查看电脑最大支持的CUDA版本
nvidia-smi
可以看出我的电脑最大支持的CUDA版本为11.6。
根据上面的图片选择合适的CUDA和python版本
从下面的官网进行下载对应版本的CUDA,以及pytorch版本
官网地址:CUDA Toolkit Archive | NVIDIA Developerhttps://developer.nvidia.com/cuda-toolkit-archive
这里我们选择11.6.0即可,点击黑线上方的链接,按照如下选择然后下载安装
下载好后,双击安装包进行安装,可以安装在自定义的目录文件夹下
选择“精简”模式,接下来一直点“下一步”就行啦~😉
环境变量配置
将环境变量添加到PATH中
接着打开cmd运行nvcc -V,有版本信息说明就是安装成功
查看是否安装成功,在命令行输入以下指令进行检查,出现以下类似的输出就证明安装成功。
nvcc -V
出现如上界面即安装成功
安装CuDNN(加速器)
通过官网进行安装CuDNN,网址:CUDA Deep Neural Network (cuDNN) | NVIDIA Developer
注意:需要注册登录才能进行安装喔😁
进去之后选择Archive of Previous Releases 打开历史版本进行下载
我们选择最下方的打开
选择一个11.x打下载即可
安装并解压完后,将这几个文件夹复制到CUDA安装路径下,就已经安装完成啦😎
这样即可
验证是否安装成功
在电脑上打开下面的文件夹,然后选择在终端打开
运行deviceQuery.exe
直接运行的话可能会报错,我们根据提示加上.\即可
最后result为pass即算安装成功
在输入下一个命令运行【bandwidthTest.exe】显示PASS则安装成功!
安装pytorch-GPU
在安装PyTorch之前,为了管理不同项目的Python环境,通常建议创建一个虚拟环境。虚拟环境可以帮助您隔离不同项目的依赖项,避免不同项目之间的冲突。以下是创建虚拟环境的步骤。
这里我们也可以选择在pycahrm终端打开,都是可以的
创建虚拟环境:运行以下命令来创建一个新的虚拟环境。您可以将<env_name>替换为您喜欢的环境名称,例如“myenv”。
conda create -n <env_name> python=<version>
例如,要创建一个名为myenv
的虚拟环境,其中Python版本为3.8,可以运行:
conda create -n myenv python=3.8
这个版本要根据前面的图片进行确定
激活虚拟环境:运行以下命令来激活刚刚创建的虚拟环境。在Windows上,使用activate命令;在macOS和Linux上,使用source命令。
conda activate <env_name>
例如,要激活名为myenv的虚拟环境,可以运行:
conda activate myenv
代码解读
激活虚拟环境后,您将看到虚拟环境的命令提示符前缀显示为(<env_name>)。这意味着您现在正在使用该虚拟环境的Python解释器。
注意:如果代码报错也可以直接运行
activate myenv
输入如下代码查看环境是否创建成功
conda env list
左侧是环境名称,右侧是环境地址
下载pytorch安装包
先去官网查找需要安装的版本
同样我们选择历史版本
找到咱们自己的对应的CUDA11.6
然后查看torch,torchvision,torchaudio的三个版本号
download.pytorch.org/whl/torch_stable.htmlhttp://download.pytorch.org/whl/torch_stable.html进入上面的网站进行查找
例如我是win10,安装的CUDA(cu116)版本为11.6,python(cp38)版本为3.8,选择如下whl下载。
下载完成如上三个文件,然后赋值到pycharm的运行目录下,
之后进入这两个文件所在的文件夹路径内(注意要进入所创建的虚拟环境下下载),在终端下执行如下命令
pip install torch-1.13.1+cu116-cp37-cp37m-win_amd64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install torchvision-0.14.1+cu116-cp37-cp37m-win_amd64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install torchaudio-0.13.1+cu116-cp37-cp37m-win_amd64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple/
然后打开conda list 进行查看
这样即安装完成,下面进行验证
import torch
# 检查是否有可用的GPU
if torch.cuda.is_available():
dev = "cuda:0" # 如果有GPU,则使用第一个GPU
device = torch.device(dev) # 一个设备对象表示CPU或GPU
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
# 创建一个张量并移动到GPU上
x = torch.tensor([1.0, 2.0, 3.0, 4.0])
x = x.to(device)
y = torch.tensor([5, 6, 7, 8])
y = y.to(device)
# 在GPU上进行计算
z = x * y
print(z)
切换好运行的虚拟环境后,新建py文件输入上面代码进行验证,成功运行即可
大功告成!