论文学习记录之D2UNet: Dual Decoder U-Net for Seismic ImageSuper-Resolution Reconstruction

标题: D2UNet: Dual Decoder U-Net for Seismic Image Super-Resolution Reconstruction(D2 UNet:用于地震图像超分辨率重建的双解码器U-Net)

期刊: IEEE Transactions on Geoscience and Remote Sensing

摘要: 由于野外资料(现场数据)分辨率低、噪声大,超分辨率重建成为地震反演的一项重要任务。从U-Net衍生的热门深度网络缺乏恢复详细边缘特征和弱信号的能力。在本文中,我们提出了一种双解码器 U-Net(D2UNet),以探索数据的细节和边缘信息。编码器输入低分辨率图像和通过Canny算法获得的边缘图像。边缘图像可以提供丰富的形状和边界信息,有助于生成更精确/高质量的数据。双解码器由一个高分辨率恢复的主解码器和边缘轮廓检测的边缘解码器组成。这两个解码器与一个使用可变卷积的纹理变形模块(TWM)进行交互。TWM旨在扭曲真实的边缘细节,以匹配低分辨率输入的保真度,尤其是边缘和弱信号的位置。损失函数是L1损失和多尺度结构相似性损失(MS-SSIM)的组合,以确保感知质量。对于合成地震图像和野外地震图像的实验结果表明,D2UNet不仅提高了噪声地震图像的分辨率,还保持了图像的保真度。

关键字: 并行解码器,地震图像,超分辨率

一、Introduction—介绍

  由于受环境条件和仪器性能的影响,野外勘探资料往往存在分辨率低、噪声干扰等问题。从高质量的地震资料中可以观察到地层、储层分布、断层等重要信息[1]。因此,地震资料的质量对油气勘探和地质勘探的资料解释[2]起着至关重要的作用。只有在保证采集质量的前提下,处理技术(如静校正和频率扩展)才能发挥最佳作用。提高分辨率和去噪是解决上述问题的两种常用技术。

  地震数据的分辨率是对地下结构空间测量的精确描述,包括垂直和水平分辨率。高分辨率处理技术旨在扩展频带并提高主频率,其本质是恢复弱信号的真实振幅。常见的方法可以分为三类:反卷积、吸收补偿和基于时频谱的频率扩展。反卷积技术从输出信号中提取或恢复原始信号,并通过压缩地震子波来扩展频谱以提高分辨率[3],[4],[5],[6]。吸收补偿技术主要由反Q滤波所主导。Kjartansson衰减模型[7]对每个频率分量进行振幅补偿和相位校正。连续小波变换的反Q滤波[8]可以恢复更宽的地震道。反Q滤波的扩展稳定因子方法[9]通过引入参数和增益限制来实现所需的高分辨率。频率扩展技术主要使用时频分解作为基本手段,在时频域处理高低频分量,以达到压缩子波和支持宽带的效果。Hilbert Huang变换(HHT)[10]通过在时频域计算补偿因子来提高分辨率。谱拟合方法[11]通过在广义S变换谱上估计地震子波谱来消除子波谱的影响。Gabor反卷积(GD)结合小波尺度方法[12]可以增加主导频率以生成更高分辨率的地震道。

  随着地震数据规模的指数级增长,传统方法在高分辨率恢复、降噪和效率方面表现较差。这使得它们难以恢复详细的地质信息。图形处理单元(GPU)的支持提升了深度学习方法在高分辨率恢复和降噪任务中的成功率[13],[14],[15],[16]。尤其是深度卷积神经网络(CNN)作为许多方法的延伸,可以很容易地利用GPU加速训练。U-Net [17]是一种编码器-解码器结构的网络,在高分辨率恢复[18],[19],[20]和去噪任务[19],[21],[22]中被广泛使用。然而,上面提到的大多数方法仅用于分辨率或去噪任务。基于U-Net的SRDUNet [23]可以同时处理这两个任务。它可以显著增强地震图像的细节结构和地层特征。但其结果存在伪影,边缘过于光滑,对弱信号恢复效果差。多任务学习(MTL)[24]已成功应用于地震勘探领域。超分辨率多任务残差U-Net(M-RUSR)[18]将地震速度模型的边缘图像作为速度模型高分辨率任务的辅助任务。结果表明,边缘图像学习提高了速度模型的高分辨率效果,具有更好的细节。

   在这篇文章中,我们提出了一个新的方法,包括三个方面:

  • 1)网络:我们提出了一个新的多任务网络 D2UNet,包含一个编码器和两个解码器。编码器接收由 Canny 算法获得的边缘图像和低分辨率图像作为输入。两个解码器并行学习两个不同的任务。地震数据的高分辨率恢复是主要任务,而边缘检测是辅助任务。辅助任务可以提供丰富的形状和边界信息,有助于生成更准确、高质量的数据。它们通过带有可变卷积的纹理变换模块(TWM)[25] 进行交互。它可以扭曲真实的边缘细节,以匹配低分辨率输入的保真度,特别是边缘和弱信号的位置。
  • 2)训练数据:为了解决训练数据不足的问题,我们参考[26]和[27]提出的方法,分别生成干净的高频率和有噪声的低频率 3D 地震体成对数据。然后,我们使用 Canny 算法提取相应的边缘图像。最后,将有噪声的低分辨率地震图像和边缘图像作为输入,将干净的高分辨率地震图像和边缘图像作为真实标签。
  • 3)损失函数:我们引入联合损失函数。每个任务包括L1损失和多尺度结构相似性损失(MS-SSIM)。它们可以提高图像的感知质量。

  对合成和野外地震数据进行了大量实验结果。结果表明,所提出的 D2UNet 网络不仅可以提高含噪地震图像的分辨率,还能保持图像的保真度。

  文章的其余部分组织如下。第二节描述了地震数据超分辨率恢复问题的定义。第三节详细描述了所提出方法的网络结构和损失函数。第四节描述了训练数据集的生成方法和网络的训练细节。第五节讨论了我们方法在合成和野外数据上的实验结果。最后,第六节进行总结。

二、Problem Definition—问题定义

  根据传统的卷积模型,地震记录可以建模如下:
y ^ = W r ^ + n (1) \hat{\textrm{y}} = \mathbf{W} \hat{r} + \mathbf{n} \tag{1} y^=Wr^+n(1)
  其中, y ^ \hat{\mathbf{y}} y^表示宽带子波 w h ( t ) w_{h}(t) wh(t) 滤波后的观测数据, W \mathbf{W} W 是地震子波 w h ( t ) w_{h}(t) wh(t) 形成的卷积矩阵, r ^ \hat{r} r^ 是通过 W \mathbf{W} W 滤波后的全频带反射系数或带限制反射系数, n \mathbf{n} n 表示随机噪音。

  超分辨率反演方法建立的目标函数表示如下:
J r ^ = min ⁡ r ^ 1 2 ∥ y ^ − W r ^ ∥ 2 2 + μ Q ( r ^ ) (2) J_{\hat{r}} = \min_{\hat{r}} \frac{1}{2} \Vert \hat{\textrm{y}} - \mathbf{W}_{\hat{r}} \Vert_{2}^{2} + \mu Q(\hat{r}) \tag{2} Jr^=r^min21y^Wr^22+μQ(r^)(2)
  其中, μ \mu μ 是正则化系数, Q ( ⋅ ) Q(·) Q() 是约束函数。
  在图像处理中,地震图像的超分辨率重建被认为是一个低层次的视觉任务,可以建模如下:
S L = D ( S H ) + n (3) \mathbf{S}_{L} = D(\mathbf{S}_{H}) + \mathbf{n}\tag{3} SL=D(SH)+n(3)
  其中, S L \mathbf{S}_{L} SL S H \mathbf{S}_{H} SH分别表示低分辨率和高分辨率的地震图像。 D ( ⋅ ) D(·) D() 表示降级映射函数。

  在这项工作中,有噪声低分辨率和无噪声高分辨率图像分别作为输入和地面实况。它们由一对 S i n = ( S L , S H ) \mathbf{S}_{in} = (\mathbf{S}_{L},\mathbf{S}_{H}) Sin=(SL,SH) 表示。我们的目标是从去了噪声的低分辨率图像 S L \mathbf{S}_{L} SL重建高分辨率图像 S H \mathbf{S}_{H} SH,由以下等式表示:
S ^ H = Net ( S L , Θ ) (4) \hat{\mathbf{S}}_{H} = \textrm{Net} (\mathbf{S}_{L},\Theta) \tag{4} S^H=Net(SL,Θ)(4)
  其中, Net ( ⋅ ) \textrm{Net}(·) Net() 表示我们的模型, Θ \Theta Θ 表示网络的参数。

三、Our Method—我们的方法

  本节介绍我们的方法。

3.1 体系结构

  图1显示了所提出的D2UNet网络架构。输入 x d \mathbf{x}^{d} xd 包括两部分:原始地震图像和边缘图像。示例如图2(a)和(b)所示。Canny边缘检测算子[28]用于从原始地震图像获得边缘图像。D2UNet网络由一个编码器和两个并行解码器组成。编码器由四个下采样块组成,每个下采样块由“最大池化层+ [卷积层+批归一化层+整流线性单元(ReLU)] × 2”组成。最大池化层使用步长为2的2 × 2内核。卷积层使用3 × 3卷积核。对于四个下采样块,特征通道分别为64、128、256、512和1024。

  D2UNet包含两个并行解码器,分别称为边缘解码器和主解码器。它们都包含四个上采样块,这些块与下采样块完成相反操作。不同之处在于,上采样块通过转置卷积来扩大特征图的大小。此外,转置卷积的输出通过跳过连接与来自相同级别的下采样块的特征图连接。虽然跳跃连接可以包含更多的保真度信息,但这些中间特征在很大程度上受到输入特征的影响,并且丢失了一些高质量的图像细节。为了克服保留真实的细节和提高保真度的问题,两个解码器使用具有可变形卷积的TWM来交互。

在这里插入图片描述

图1. 文章提出的网络结构

在这里插入图片描述

图2. 输入:(a)噪声和低分辨率地震图像;(b)对应于(a)的边缘图像;(c)干净和高分辨率地震图像;(d)对应于(c)的边缘图像;

  假设含噪声的低分辨率图像和边缘图像为 x d = ( x s , x e ) ∈ R H × W × 2 \mathbf{x}^{d} = (\mathbf{x}^{s},\mathbf{x}^{e}) \in \mathbb{R}^{H \times W \times 2} xd=(xs,xe)RH×W×2。输入 x s \mathbf{x}^{s} xs 通过编码器得到潜在向量 F 5 , 3 E = E ( x s ) F_{5,3}^{E} = E(\mathbf{x}^{s}) F5,3E=E(xs)。为了保持真实的图像边缘,我们使用边缘解码器 D e d g e D_{edge} Dedge 将其解码回图像空间,表示如下:
F 4 e = D e d g e ( F 5 , 3 E ) (5) F_{4}^{e} = D_{edge}(F_{5,3}^{E}) \tag{5} F4e=Dedge(F5,3E)(5)
  其中,边缘解码器的多级特征分别表示为: F i e , i ∈ { 1 , 2 , 3 , 4 } F_{i}^{e} ,i \in \{1,2,3,4\} Fie,i{1,2,3,4}

  主解码器 D m a i n D_{main} Dmain 用于生成高分辨率地震图像 x m \mathbf{x}^{m} xm ,而边缘解码器 D e d g e D_{edge} Dedge 用于获取边缘信息和细节。 D m a i n D_{main} Dmain 通过在多个空间层次从退化输入中提取输入特征来扭曲边缘特征 F i e F_{i}^{e} Fie 。在TWM中,我们使用具有最大空间分辨率的输入特征 x e \mathbf{x}^{e} xe 作为输入,可以保持低分辨率图像信息和边缘信息的最丰富的保真度。

  对于第 i i i 分辨率级别, F i e F_{i}^{e} Fie 和高质量特征 x e \mathbf{x}^{e} xe 特征被用作 TWM 的输入,表示如下:
F i t = TWM ( F i e , Conv ( x e ) ) (6) F_{i}^{t} = \textrm{TWM}(F_{i}^{e},\textrm{Conv}(\mathbf{x}^{e})) \tag{6} Fit=TWM(Fie,Conv(xe))(6)
  其中,TWM 是纹理扭曲模块。如图 3 所示,我们首先连接这两个输入特征以生成偏移量。然后,将偏移量应用与可变形卷积以扭曲边缘特征以匹配输入的保真度,表示如下:
o f f s e t = Conv ( Concat ( F i e , Conv ( x e ) ) F i t = DeformConv ( F i e , offset ) (7) \begin{align*} offset &= \textrm{Conv}(\textrm{Concat}(F_{i}^{e},\textrm{Conv}(\mathbf{x}^{e})) \\ F_{i}^{t} &= \textrm{DeformConv}(F_{i}^{e},\textrm{offset}) \end{align*} \tag{7} offsetFit=Conv(Concat(Fie,Conv(xe))=DeformConv(Fie,offset)(7)
  其中,DeformConv表示可变形卷积。
在这里插入图片描述

图3. 纹理扭曲模块

  然后,主解码器的特征 F i , l m F_{i,l}^{m} Fi,lm 由三个特征级联而成,包括扭曲特征 F i t F_{i}^{t} Fit ,解码器中下采样块的特征 F i t F_{i}^{t} Fit,以及主解码器中的转置卷积特征。这个过程可以表示如下:
F 1 , 1 m = Concat ( F 1 t , F 4 , 3 E , Deconv ( F 5 , 3 E ) ) F i , 1 m = Concat ( F i t , F ( 5 − i ) , 3 E , Deconv ( F ( i − 1 ) , 3 m ) ) (8) \begin{align*} F_{1,1}^{m} &= \textrm{Concat}(F_{1}^{t},F_{4,3}^{E},\textrm{Deconv}(F_{5,3}^{E})) \\ F_{i,1}^{m} &= \textrm{Concat}(F_{i}^{t},F_{(5-i),3}^{E},\textrm{Deconv}(F_{(i-1),3}^{m})) \end{align*} \tag{8} F1,1mFi,1m=Concat(F1t,F4,3E,Deconv(F5,3E))=Concat(Fit,F(5i),3E,Deconv(F(i1),3m))(8)
   其中, i ≥ 2 i \geq 2 i2,Deconv表示转置卷积。边缘解码器的特征被用作包含丰富边缘信息的参考特征。

  主解码器共同学习地震数据的主要特征和“参考特征”。

  此外,我们在主解码器的四个上采样块中添加了一个次像素卷积层,然后连接三个残差块。次像素卷积在图像超分辨率重建精度和计算性能方面取得了重要成功[29]。我们使用次像素卷积层进行上采样。它不仅可以减少训练时间和节省GPU内存,还可以提供更多上下文信息以进一步提高图像质量[30]。在次像素卷积层之后连接了三个残差块,这有助于学习更多高频信息和细节。每个残差块由两个“卷积 + 批量归一化 + ReLU”模块组成。跳跃连接涵盖了两个卷积层。最后,我们使用一个1×1卷积层来减少特征通道数量,以与地面真值匹配。

3.2 损失函数

  我们的方法的损失函数定义如下:
L = W ( L d , σ d ) + W ( L e , σ e ) (9) L = \mathbb{W}(L_{d},\sigma_{d}) + \mathbb{W}(L_{e},\sigma_{e}) \tag{9} L=W(Ld,σd)+W(Le,σe)(9)
  其中,加权算子 W \mathbb{W} W 和可训练参数 σ i \sigma_{i} σi 平衡两个任务之间的训练。 L d L_{d} Ld L e L_{e} Le 分别表示主解码器分支和边缘解码器分支的损失。

  在[31]之后,我们定义权重参数 W \mathbb{W} W 如下:
W ( L i , σ i ) = 1 2 σ i L i + log ⁡ σ i , i ∈ { d , e } (10) \mathbb{W}(L_{i},\sigma_{i}) = \frac{1}{2 \sigma_{i}}L_{i} + \log \sigma_{i},i \in \{ d,e \} \tag{10} W(Li,σi)=2σi1Li+logσi,i{d,e}(10)
  其中, σ i \sigma_{i} σi 的值用来度量与预测相关联的不确定性,对数项的作用是防止 σ i \sigma_{i} σi 过度增加。通过动态调整多个损失项的贡献,可以自动平衡损失。

  损失项 L d L_{d} Ld L e L_{e} Le 包括 L 1 L_{1} L1 MS-SSIM \textrm{MS-SSIM} MS-SSIM,表示如下:
L d = λ L 1 ( x ^ d , x ^ d ) + ( 1 − λ ) L MS-SSIM ( x ^ d , x ^ d ) L e = λ L 1 ( x ^ e , x ^ e ) + ( 1 − λ ) L MS-SSIM ( x ^ e , x ^ e ) (11) \begin{align*} L_{d} &= \lambda L_{1}(\hat{x}^{d},\hat{\mathbf{x}}^{d}) + (1-\lambda) L_{\textrm{MS-SSIM}}(\hat{x}^{d},\hat{\mathbf{x}}^{d}) \\ L_{e} &= \lambda L_{1}(\hat{x}^{e},\hat{\mathbf{x}}^{e}) + (1-\lambda) L_{\textrm{MS-SSIM}}(\hat{x}^{e},\hat{\mathbf{x}}^{e}) \end{align*} \tag{11} LdLe=λL1(x^d,x^d)+(1λ)LMS-SSIM(x^d,x^d)=λL1(x^e,x^e)+(1λ)LMS-SSIM(x^e,x^e)(11)
  其中, L 1 L_{1} L1 被广泛用于图像超分辨率。 MS-SSIM \textrm{MS-SSIM} MS-SSIM 是一种多尺度图像质量评价方法。 x ^ d \hat{\mathbf{x}}^{d} x^d x d \mathbf{x}^{d} xd 分别表示低分辨率地震图像和地面真实情况。 x ^ e \hat{\mathbf{x}}^{e} x^e x e \mathbf{x}^{e} xe 分别表示恢复的高分辨率图像和地面真实情况。 λ \lambda λ L 1 L_{1} L1 函数的权重参数,根据[23], λ \lambda λ 被设置为0.4。

   L 1 L_{1} L1 损失定义如下:
L 1 = 1 N ∑ i , j ∣ x ^ ( i , j ) − x ( i , j ) ∣ (12) L_{1} = \frac{1}{N} \sum_{i,j} \vert \hat{x}(i,j) - \mathbf{x}(i,j) \vert \tag{12} L1=N1i,jx^(i,j)x(i,j)(12)
  其中, N N N表示像素的总数。 MS-SSIM \textrm{MS-SSIM} MS-SSIM 是一种多尺度图像质量评价方法,是 SSIM \textrm{SSIM} SSIM 的改进版本。 SSIM \textrm{SSIM} SSIM 的定义如下:
L SSIM ( x ^ , x ) = [ l ( x ^ , x ) ] α ⋅ [ c ( x ^ , x ) ] β ⋅ [ s ( x ^ , x ) ] γ (13) L_{\textrm{SSIM}}(\hat{\mathbf{x}},\mathbf{x}) = [l(\hat{\mathbf{x}},\mathbf{x})]^{\alpha}·[c(\hat{\mathbf{x}},\mathbf{x})]^{\beta}·[s(\hat{\mathbf{x}},\mathbf{x})]^{\gamma}\tag{13} LSSIM(x^,x)=[l(x^,x)]α[c(x^,x)]β[s(x^,x)]γ(13)
  其中,
l ( x ^ , x ) = 2 μ x ^ μ x + c 1 μ x ^ 2 + μ x 2 + c 1 c ( x ^ , x ) = 2 σ x ^ x + c 2 σ x ^ 2 + σ x 2 + c 2 s ( x ^ , x ) = σ x ^ x + c 3 σ x ^ σ x + c 3 (14) \begin{align*} l(\hat{\mathbf{x}},\mathbf{x}) &= \frac{2\mu_{\hat{\mathbf{x}}}\mu_{\mathbf{x}}+c_{1}}{\mu^{2}_{\hat{\mathbf{x}}}+\mu^{2}_{\mathbf{x}}+c_{1}} \\ c(\hat{\mathbf{x}},\mathbf{x}) &= \frac{2\sigma_{\hat{\mathbf{x}}\mathbf{x}}+c_{2}}{\sigma^{2}_{\hat{\mathbf{x}}}+\sigma^{2}_{\mathbf{x}}+c_{2}} \\ s(\hat{\mathbf{x}},\mathbf{x}) &= \frac{\sigma_{\hat{\mathbf{x}}\mathbf{x}}+c_{3}}{\sigma_{\hat{\mathbf{x}}}\sigma_{\mathbf{x}}+c_{3}} \end{align*} \tag{14} l(x^,x)c(x^,x)s(x^,x)=μx^2+μx2+c12μx^μx+c1=σx^2+σx2+c22σx^x+c2=σx^σx+c3σx^x+c3(14)
  其中, x ^ \hat{\mathbf{x}} x^ x \mathbf{x} x分别表示恢复的高分辨率图像和地面真实情况。 μ \mu μ σ \sigma σ 分别表示图像的平均值和标准差。例如: σ x ^ x \sigma_{\hat{\mathbf{x}}\mathbf{x}} σx^x 表示图像 x ^ \hat{\mathbf{x}} x^ x \mathbf{x} x 之间的协方差。 c 1 , c 2 c_1,c_2 c1,c2 c 3 c_3 c3 表示三个常数,以避免分母过小而达不到最佳值。 l ( ⋅ ) , c ( ⋅ ) l(·),c(·) l(),c() s ( ⋅ ) s(·) s() 分别表示计算亮度或振幅、对比度和结构的函数。 α , β \alpha,\beta α,β γ \gamma γ 表示这三个函数相应的权重。

   MS-SSIM \textrm{MS-SSIM} MS-SSIM定义如下:
L MS-SSIM ( x ^ , x ) = [ l M ( x ^ , x ) ] α M ⋅ ∏ j = 1 M [ c j ( x ^ , x ) ] β j [ s j ( x ^ , x ) ] γ j (15) L_{\textrm{MS-SSIM}}(\hat{\mathbf{x}},\mathbf{x}) = [l_{M}(\hat{\mathbf{x}},\mathbf{x})]^{\alpha_{M}}·\prod_{j=1}^{M}[c_{j}(\hat{\mathbf{x}},\mathbf{x})]^{\beta_{j}}[s_{j}(\hat{\mathbf{x}},\mathbf{x})]^{\gamma_{j}} \tag{15} LMS-SSIM(x^,x)=[lM(x^,x)]αMj=1M[cj(x^,x)]βj[sj(x^,x)]γj(15)

  其中, M = 5 M = 5 M=5 表示我们从五个尺度测量 SSIM \textrm{SSIM} SSIM α = β = γ = [ 0.0448 , 0.2856 , 0.3001 , 0.2363 , 0.1333 ] \alpha = \beta = \gamma = [0.0448,0.2856,0.3001,0.2363,0.1333] α=β=γ=[0.0448,0.2856,0.3001,0.2363,0.1333]

四、Training Datasets—训练数据集

  所提出的方法是有监督的,我们需要大量的无噪声高分辨率图像作为地面真实情况。然而,这种真实数据集在实践中很少见。已经有许多参考文献 [26]、[27] 证实,仅在合成地震数据上训练的网络对处理与地震相关的任务是有效和准确的。因此,我们通过构建真实复杂结构模型来提取大量高分辨率图像。

4.1 生成训练数据

  图4显示了我们创建合成数据集的工作流程,与文献[26]和[27]类似(3D数据体的详细创建过程见附录A),具体如下。
在这里插入图片描述

图4. 创建合成训练数据集的工作流程。 (a) 初始反射率模型。 (b) 高分辨率地震体。 (c) 低分辨率地震体。 (d) 带噪声的低分辨率地震体。 (e) 高分辨率地震图像。 (f) 低分辨率地震图像。
  • 步骤1:生成一个1-D水平反射率模型,随机序列在[-1,1]之间。
  • 步骤2:使用垂直切割模型创建折叠结构。
  • 步骤3:通过添加平面剪切获得折叠和断层反射模型。
  • 步骤4:将反射率模型与高频Ricker小波进行卷积,以获得高频地震体,然后提取多个2-D高频地震图像作为地面实况(标准答案)。
  • 步骤5:将反射率模型与低频Ricker小波进行卷积,以获得低频地震体,然后进一步添加随机噪声以获得更真实的地震体,并提取多个2-D(二维)带噪低频地震图像作为输入。

  我们按照这些步骤创建了1600个地震体,包括800个高频和对应的低频体。这些地震体被随机分为三组:80%作为训练集,10%作为验证集,10%作为测试集。从每个高频及其对应的低频地震体中,我们提取了多个256×256和128×128的2D地震图像对。值得注意的是,添加到低频图像中的随机有色噪声取代了常见的白色高斯噪声。如图5所示,随机有色噪声比简单的白色高斯噪声更接近真实情况。此外,在[4]和[14]的范围内随机定义具有添加噪声的训练样本的信噪比(SNR)。
在这里插入图片描述

图5. 具有不同噪声的合成地震图像的比较:(a)白色高斯噪声和(B)随机有色噪声。

  为了提高模型的性能,我们将256×256的2D地震图像裁剪成小块。块的大小会影响模型的性能。如果太大,会占用大量内存空间,而如果太小,则无法恢复细节信息。为了平衡上述问题,我们使用两种不同的块大小测试模型的性能,包括48×48和96×96。图6(a)和(b)分别显示了当块大小为48和96时,验证数据集的峰值信噪比(PSNR)。我们发现,96块的网络性能优于48块。图6©和(d)分别显示了96块和48块的数据结果。结果显示,较大块的训练网络可以更好地恢复弱信号(红色箭头)。此外,我们还对每个样本进行随机水平翻转,以增加训练样本的多样性。
在这里插入图片描述

图6. 切片尺寸:48 × 48:(a)性能曲线和(c)验证集实验结果。贴片尺寸:96 × 96:(B)性能曲线和(d)验证集实验结果。 ## 4.2 训练细节   在数据增强之后,我们生成了3600个低分辨率-高分辨率图像对。每个样本均归一化为[0,1]。

  我们使用Adam优化器[32]进行训练,设置 β 1 = 0.99 , β 2 = 0.999 , ϵ = 1 0 − 8 \beta_{1} = 0.99,\beta_{2} = 0.999,\epsilon = 10^{-8} β1=0.99,β2=0.999,ϵ=108 momentum = 0.9 \textrm{momentum} = 0.9 momentum=0.9。初始学习率初始化为 1 e − 4 1e-4 1e4,训练迭代次数设置为150次。实验在Pytorch GPU框架中进行,D2UNet在NVIDIA GeForce GTX 1650 GPU上进行训练和测试。

  训练过程大约需要12小时。图7(a)示出了用于训练和验证的损失曲线,并且图7(B)示出了相应损失的权重。某个损失项的权重越大,表明与任务相关的置信度越高(不确定性越低)。
在这里插入图片描述

图7. 训练记录:(a)训练和验证损失曲线和(B)各损失的权重。某个损失项的权重越大,表明与任务相关的置信度越高(不确定性越低)。

  图8示出了TWM训练过程(仅示出了前12个通道),其对应于边缘解码器过程。第一列表示在每个转置卷积之后边缘解码器的结果Fe i。我们发现,特征图具有地震波形的特征,直到i = 3。第二列表示在TWM中计算的偏移。我们发现当i = 2时,偏移量中存在明显的波形形状。第三列表示应用偏移后的特征图。增加炮检距后的特征图的地震波形更加清晰、准确。这个例子足以说明TWM有能力更快、更准确地提取重要特征。
在这里插入图片描述

图8. TWM训练流程示例。其对应于图1中的边缘解码器过程。

五、Experiments—实验

  在本节中,我们展示了所提出的方法在合成和现场数据上的性能,并将其与SRDUNet [23]进行了比较。

5.1 合成数据评估

  我们首先评估D2UNet模型在合成数据上的性能。这些数据不涉及训练和验证数据集。图9示出了合成数据的测试结果,其中图9(a)和图9(b)分别示出了原始噪声低分辨率地震图像和地面实况。图9(c)和(d)分别显示了从SRDUNet和D2UNet恢复的高分辨率地震图像。与含噪低分辨率地震图像相比,SRDUNet和本文方法恢复的高分辨率地震图像具有更强的构造特征和更清晰的断层等边缘特征。特别是,低分辨率图像中的模糊痕迹也可以很好地恢复(如黄色箭头所示)。另外,两种方法可以同时实现分辨率提高和去噪。与SRDUNet方法相比,我们的方法对弱信号更具鲁棒性,如图中红色箭头所示。
在这里插入图片描述

图9. 合成数据测试结果:(a)噪声和低分辨率地震图像,(B)干净和高分辨率地震图像,(c)使用SRDUNet恢复的地震图像,以及(d)使用D2UNet恢复的地震图像。

  为了更清楚地比较恢复效果,我们比较了恢复结果中随机选择的地震道的振幅特征,并将结果报告在图10中。这三个记录分别来自地面实况(蓝色)、SRDUNet恢复的地震剖面(绿色)和D2UNet恢复的地震剖面(橙子),它们分别对应于图10中的彩色垂直线。三条曲线的波形基本一致,但我们的方法恢复的道振幅更接近地面真实。从合成数据的测试结果来看,该方法可以将噪声较大的低分辨率图像转换为断层增强、薄层化、边缘特征清晰的高分辨率地震图像,有利于后续的地震解释。此外,我们的方法是有效的,即处理150个128×128地震图像只需要25.85秒。
在这里插入图片描述

图10. 从图9所示的垂直线所在的相同位置提取的三条轨迹。蓝色、绿色和橙子曲线分别表示从地面实况[图9(b)]、SRDUNet输出[图9(c)]和D2UNet输出[图9(d)]中提取的轨迹。

5.2 现场数据评估

  在第5.1节中,我们解释了D2UNet方法对合成数据的有效性。在本节中,我们使用多个现场地震数据测试训练的D2UNet。

  图11展示了直接从文章[23]中截取的三个现场示例。图11(a)、(d)和(g)展示了在不同勘探中获取的三个现场地震数据。图11的第二和第三列是基于SRDUNet和D2UNet的同时高分辨率和去噪方法得到的对应结果。每个大图的底部是与黄色框对应的局部放大视图。与原始数据相比,SRDUNet和D2UNet的恢复结果显示了更清晰和详细的地质结构和地层特征(如小尺度断层和薄层),并去除了噪音。但从细节上看,我们的方法比SRDUNet更好。根据局部放大视图,D2UNet方法对弱信号具有更强的恢复能力,并且对于薄层具有更高的分辨率(黄色箭头)。从SRDUNet中间的局部放大视图可以看出,SRDUNet对模糊的地质结构和特征的恢复效果较差,存在过度平滑的现象。相比之下,D2UNet恢复的地层更真实丰富(黄色箭头)。从三个现场示例的恢复结果可以看出,尽管训练数据和现场数据之间存在显著差异,但经过良好训练的模型在合成数据和现场数据测试中表现良好。这进一步表明,仅使用合成数据训练的D2UNet方法具有一定的泛化能力和鲁棒性。
在这里插入图片描述

图11. 在三个野外地震数据上的实验结果。第一现场数据:(a)低分辨率地震图像,使用(B)SRDUNet和(c)D2UNet方法的恢复结果。第二现场数据:(d)低分辨率地震图像,使用(e)SRDUNet和(f)D2UNet方法的恢复结果。第三现场数据:(g)低分辨率地震图像,使用(h)SRDUNet和(i)D2UNet方法的恢复结果。每个子图的底部显示了黄色框的部分放大图。

  此外,我们还将高分辨率结果与原始地震道进行了比较。图12展示了从图11中提取的一些地震道,以及我们在图11中得到的高分辨率图像。图12(a)显示了从图11(a)和©中随机提取的地震道,图12(b)是从第二个数据中提取的一条地震道(图11(d)和(f)],图12©是从第三个数据中提取的一条地震道(图11(g)和(i))。其中,蓝色表示原始地震道,橙色表示输出图像的地震道。与原始地震道相比,我们的结果具有类似的特征和波形趋势,但更具细节。
在这里插入图片描述

图12. 对比现场地震图像(蓝色)和我们D2UNet方法在图11中的结果(橙色)的地震道分析。(a) D2UNet方法结果(橙色)与第一组现场数据(蓝色)的地震道分析。(b) D2UNet方法结果(橙色)与第二组现场数据(蓝色)的地震道分析。(c) D2UNet方法结果(橙色)与第三组现场数据(蓝色)的地震道分析。

  此外,我们还对三组地震数据进行了频谱分析,如图13所示。在频谱中,每个频率的振幅是通过对地震剖面中所有道进行平均得到的。蓝色和橙色曲线分别表示原始数据和输出数据的振幅谱。结果显示,D2UNet获得的地震剖面的频率带比原始数据更宽,特别是在高频部分。
在这里插入图片描述

图13. 三组现场地震图像的频谱分析:(a) 第一组现场数据,(b) 第二组现场数据,以及 (c) 第三组现场数据。

  第二个现场实例选自泸州203井的测井数据。测试数据包括879道地震道,采样间隔为0.02秒。图14展示了两种方法对原始测井数据的恢复效果。从整体效果来看,SRDUNet方法的恢复结果并不完全正确,如图14(b)中的黑色方框所示。相比之下,我们的方法在视觉质量上更准确。图15显示了图14中黄色方框对应的局部放大视图。图像中覆盖的数据是测井数据,包含了0.3秒的时间。我们发现SRDUNet和D2UNet的测井数据在很好地吻合。特别是D2UNet恢复的结果具有更详细的地层结构和边缘特征,如图中的黑色箭头所示。此外,我们还比较了各种傅里叶频谱,以了解主导频率在地震记录的特征频带(5-40 Hz)中的突出程度。结果显示,我们的方法获得的频率带更宽,提供的信息增益更清晰(图16),而SRDUNet方法获得的频率带与原始数据差异不大。
在这里插入图片描述

图14. 泸州203数据的高分辨率恢复结果:(a) 原始地震剖面,(b) 使用SRDUNet方法恢复的地震剖面,以及 (c) 使用D2UNet方法恢复的地震剖面。

在这里插入图片描述
在这里插入图片描述

图16. 测井数据的频谱分析。

  最后,我们总结了两种方法对所有数据的实验结果,见表I。表中除时间外,均为平均指标。对于合成数据,我们测试了150个128 × 128地震图像。该方法在PSNR和SSIM两个方面都有改进,而测试时间仅增加了几秒。对于现场数据和测井数据,SSIM、优势谱和PSNR构成联合指标。该方法的各项指标均优于SRDUNet,尤其是测井数据。

表1. D2UNet和SRDUNet实验结果的比较。平均PSNR: 平均峰值信噪比(分贝); 平均SSIM: 平均结构相似性指标;平均DS: 平均主导频谱(赫兹)。合成数据包括150张地震图像。现场数据对应于图11中的三个数据。测井数据对应于图14(a)。

在这里插入图片描述

六、Conclusion—结论

  在这篇文章中,我们设计了一个名为D2UNet的网络,它具有一个编码器和两个并行解码器。通过将合成数据与现场数据以及测试算法的高分辨率结果进行比较,我们的结果能够更清晰地反映出详细的结构和地层特征,特别是边缘和弱信号。尽管网络仅使用合成数据进行训练,但它仍具有良好的泛化能力。如果训练数据集能够得到丰富,预计现场数据的性能将进一步提高。

七、附录

附录A:3-D SYNTHETIC SEISMIC CONSTRUCTION—三维地震构造

  创建合成数据的工作流程首先由[33]提出。

  首先,我们生成一个1-D水平反射率模型 r ( x , y , x ) r(x,y,x) r(x,y,x),其中包含在 [ − 1 , 1 ] [-1,1] [1,1]范围内的随机序列[图17(a)]。其次,我们通过垂直剪切获得褶皱和断层反射模型。褶皱结构定义如下:
s 1 ( x , y , z ) = a 0 + 1.5 z z m a x ∑ k = 1 k = N b k e ( x − c k ) 2 + ( y − d k ) 2 2 σ k 2 (16) s_1(x,y,z) = a_0 + \frac{1.5z}{z_{max}}\sum_{k=1}^{k=N}b_{k}e^{\frac{(x-c_k)^{2}+(y-d_k)^{2}}{2\sigma^{2}_{k}}} \tag{16} s1(x,y,z)=a0+zmax1.5zk=1k=Nbke2σk2(xck)2+(ydk)2(16)
  其中, 1.5 z z m a x \frac{1.5z}{z_{max}} zmax1.5z表示一个线性缩放函数,旨在从底部到顶部减弱垂直褶皱。 e ( x − c k ) 2 + ( y − d k ) 2 2 σ k 2 e^{\frac{(x-c_k)^{2}+(y-d_k)^{2}}{2\sigma^{2}_{k}}} e2σk2(xck)2+(ydk)2表示一个二维高斯函数,它产生一个在横向变化的褶皱结构。通过不同组合的 a 0 , b k , c k , d k a_0,b_k,c_k,d_k a0,bk,ck,dk σ k \sigma_k σk,可以产生具有不同空间变化的不同褶皱结构。我们获得了折叠模型 r ( x , y , z + s 1 ( x , y , z ) ) r(x,y,z+s_{1}(x,y,z)) r(x,y,z+s1(x,y,z))[图17(b)],这是通过对原始反射率模型 r ( x , y , z ) r(x,y,z) r(x,y,z) 进行sinc插值得到的。第三,我们还添加了一些平面剪切,定义如下:
s 2 ( x , y , z ) = e 0 + f x + g y (17) s_{2}(x,y,z) = e_0 +fx +gy \tag{17} s2(x,y,z)=e0+fx+gy(17)
  其中, e 0 e_0 e0 f f f g g g 从预定义范围内随机选择。平面切割仅控制水平方向,垂直方向保持不变。我们得到一个新的反射率模型 r ( x , y , z + s 1 + s 2 ) r(x,y,z+s_{1}+s_{2}) r(x,y,z+s1+s2)[图17( c )],这是通过将平面位移 s 2 ( x , y , z ) s_2(x,y,z) s2(x,y,z) 应用于 r ( x , y , z + s 1 ) r(x,y,z+s_{1}) r(x,y,z+s1)得到的。第四,我们添加具有不同方向(倾角和走向)和位移的平面断层。如图17(d)所示,我们添加了六个互相不太接近的断层面。断层位移分布有两种定义:线性函数和高斯函数。在线性函数下,断层位移沿倾角方向线性增加或减小。在高斯函数下,从断层中心沿着所有方向,断层位移朝着断层面减小。我们设置每个断层的最大断层位置在0到40个采样之间。第五,我们将在前一步骤中获得的模型与具有不同峰值频率的 Ricker子波进行卷积,以获得3-D地震图像[图17(e)]。最后,我们添加有色噪声以进一步提高图像的真实性[图17(f)]。
在这里插入图片描述

图17. 创建3D合成训练数据集的工作流程:(a) 水平反射率模型,(b) 添加褶皱结构,(c) 添加平面剪切,(d) 折叠断层反射率模型,(e) 通过反射率模型和Ricker子波进行卷积获得的合成地震图像,以及 (f) 添加噪声。

附录B:ABLATION STUDY—消融研究

  D2UNet接受地震数据和边缘图像作为输入。它具有双解码器结构,旨在逐渐整合地震数据特征和边缘特征。这两个解码器通过TWM连接,旨在扭曲真实地层细节以匹配低分辨率输入的保真度,特别是断层。在本节中,我们使用图19(a)作为测试数据,进行这些关键设计的定性消融研究。
  我们设置了三种网络变体,如表II所示。

  • 变体1 [图18(a)]:输入为地震图像;单解码器,没有TWM。
  • 变体2 [图18(b)]:输入为地震图像和边缘图像;单解码器,没有TWM。
  • 变体3 [图18( c )]:输入为地震图像和边缘图像;双解码器,没有TWM。
  • D2UNet [图18(d)]:输入为地震图像和边缘图像;双解码器,带有TWM。
表2. 消融结果。输入特征:边缘图像;双解码器:双解码器;TWM:纹理扭曲模块

在这里插入图片描述

  变体3采用并行解码器结构,将高分辨率地震重建分为两个子任务,即同时生成高分辨率地震图像和边缘图像。在解码过程中,边缘解码器的特征直接与主解码器的同层特征拼接。如图19(d)所示,几乎没有伪影,分辨率逐渐增加。但是,正如图中黄色框所示,恢复的细节还不够真实的。据推测,网络将原始数据中的噪声恢复为地层的一部分。

  D2UNet在两个并行解码器之间添加了TWM,旨在扭曲真实地层细节,以匹配低分辨率输入的准确性,尤其是在噪音强、分辨率低的位置。图19(e)显示,添加了TWM后恢复的地震图像具有最高的分辨率和更真实的细节。从表II中记录的PSNR值可以看出,D2UNet的重建结果是最优的。

附录C:NOISE ROBUSTNESS ASSESSMENT—噪声稳健性评估

  在设计新的分辨率增强方法时,应考虑地震数据可能存在的噪音。因此,我们进行了更多的实验来评估所提方法在使用不同强度噪音的地震数据时的性能。具体而言,我们评估了使用有色噪音合成数据训练的D2UNet在高斯噪音上的去噪性能。

  合成数据仍然是使用附录A中的方法生成的。噪声数据是通过将标准差为σ = 0.2、0.4、0.6和0.8的高斯噪声添加到清洁合成数据中生成的。噪声数据的信噪比分别为13.934、7.943、4.454和0.875。表III显示了D2UNet在噪声数据上性能的定量比较。我们可以看到,随着σ的增加,地震数据的质量显著下降(信噪比值非常低)。然而,D2UNet的重建结果仍然可以保证较高的信噪比和峰值信噪比(PSNR),均方误差控制在0.1以下,结构相似性指数(SSIM)在0.6以上。

表3. 不同高斯噪声数据下D2UNET恢复结果的定量比较

在这里插入图片描述

  图20的顶部一行对应具有不同噪声强度的地震数据。当σ = 0.8时,噪声几乎覆盖了某些地层和断层的细节。值得注意的是,D2UNet网络在训练时使用了有色噪音数据。如图20底部所示,D2UNet仍然能够产生一种愉悦的视觉效果来抑制高斯噪声。尽管随着噪声水平的增加,结果的评估指标略有下降,但仍然是可以接受的。因此,D2UNet展现出处理不同类型噪声(高斯噪声和有色噪声)以及不同噪声强度的能力。
在这里插入图片描述

图20. D2UNet在噪声地震数据上的评估。最上面的一条线表示噪声数据。底部的线代表D2Unet获得的高分辨率结果。(a)σ = 0.2 [SNR = 13.934]。(b)σ = 0.4 [SNR = 7.943]。(c)σ = 0.6 [SNR = 4.454]。(d)σ = 0.8 [SNR = 0.875]。(e)[SNR = 16.924]。(f)[SNR = 13.773]。(g)[SNR = 11.875]。(h)[SNR = 9.405]。
  • 0
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
U-Net是一种用于图像分割的深度学习网络结构,常被用于医学图像分析和计算机视觉领域。U-Net网络结构可以有效地将输入图像分割为多个类别,并且在训练过程中能够达到较好的分割精度。 CSDN是一个开发者社区网站,提供了许多深度学习相关的资源和文档。其中,有一份关于U-Net代码的多类别训练文档可供下载和学习。这份文档提供了详细的说明和实现代码,帮助开发者理解并应用U-Net进行多类别图像分割任务。 在使用U-Net进行多类别训练时,我们需要准备带有标签的训练数据集。每个图像样本都包含输入图像和对应的标签图像,标签图像中每个像素都被赋予表示不同类别的标签。通过使用U-Net网络结构,我们可以将输入图像传入网络中进行训练,并根据网络输出与标签图像进行比较来计算损失,然后使用反向传播算法来更新网络参数,最终使网络能够对输入图像进行准确的多类别分割。 通过CSDN下载的U-Net代码,我们可以学习到如何搭建U-Net网络结构、如何处理输入数据、如何计算损失并进行反向传播更新参数等步骤。这份文档提供了一份较为完整的实现,并可以根据具体任务自定义网络的结构和损失函数。 总之,通过使用U-Net网络结构以及CSDN提供的多类别训练代码,我们可以快速实现并训练图像分割任务,并获得较好的分割结果。这份代码对于深度学习研究者和开发者来说,是一个非常有价值的资源。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值