2024年8月20日~2024年8月26日周报

目录

一、前言

二、完成情况

2.1 解决网络波动问题——学习率

2.2 设计盐数据速度模型展示图

三、下周计划


一、前言

        上周主要完成:

  • ①与老师讨论损失函数与介绍部分内容;
  • ②基于盐数据设计TU-Net的网络架构,并思考如何引出该网络架构;
  • ③验证TU-Net在SEG模拟盐数据上的适用情况;

        本周主要完成:

  • ①解决验证集上损失函数的波动问题;
  • ②继续完善论文与实验;
  • ③设计盐数据速度模型展示图;

二、完成情况

2.1 解决网络波动问题——学习率

        7月底-8月主要在完成OpenFWI数据集上的实验,包括对比实验与消融实验。当时验证集上的损失函数有一定的波动情况(batchsize设置20,学习率设置0.001),但是结果显示这个波动的影响不算大,且验证集损失有下降趋势。因此,之前没有在在意这个问题。

        但是上周在盐数据上进行实验时,发现验证集的损失值波动非常大(batchsize设置10,学习率设置0.001),波动情况如下图所示(该数据进行了归一化):

  • SEG_Net_loss3_weight_TrainSize1600_Epoch160_BatchSize10_LR0.001TrainLoss:

        后续我尝试在运行盐数据时不采用归一化操作,波动会小很多,但是指标也不是很稳定。因此,我尝试降低学习率或者增大batchsize调整波动情况。

  • 在不改变学习率的情况下(0.001),将batchsize从10调整为15:SEG_Net2_loss1+2_TrainSize1600_Epoch160_BatchSize15_LR0.001TrainLoss:。在调整中,主要有两个改变:①指标相比于batchsize为10的时候有改善;②训练时间增加了。在batchsize为10的时候,每一个epoch的训练时间大概为1分25秒,当时间增长后,每一个epoch的训练时间变为2分14秒。

  • 在batchsize为10的情况下,将学习率降低为0.0001:SEG_Net2_loss1+2_TrainSize1600_Epoch160_BatchSize10_LR0.0001TrainLoss。在本次调整中,主要有两个明显的改变:①与增大batchsize相比,这个波动明显更小了,但是这会导致指标下降,因为很长时间无法到达最低点;②训练时间没有改变。

  • 在进行了两个尝试(①增加batchsize、②降低学习率)后,我有了新的思考,尝试将学习率取两者的一半,折中取为0.0005,损失下降情况与上图接近,且指标明显变好。
  • 最后继续尝试了0.0003的学习率,在该指标下,效果最好。
  • 在盐数据上进行学习率与batchsize的尝试后,我回想起之前在OpenFWI数据集上的尝试。 

        下面的前两张图片是当时在OpenFWI CurveVelA数据集上的实验记录(蓝色曲线代表训练集,橘色曲线代表验证集):

  • ①TU_Net_loss3_TrainSize24000_Epoch160_BatchSize20_LR0.001TrainLoss:

  •  ②TU_Net_loss3_weight_TrainSize24000_Epoch180_BatchSize64_LR0.001TrainLoss:

  • ③TU_Net_loss3_weight_TrainSize24000_Epoch160_BatchSize20_LR0.0001TrainLoss: 

  •  ④TU_Net_loss3_weight_TrainSize24000_Epoch160_BatchSize20_LR0.0005TrainLoss:

  •  ⑤TU_Net_loss3_weight_TrainSize24000_Epoch160_BatchSize20_LR0.0003TrainLoss

         在之前实验的时候,认为超参数对实验的影响不算很大。另外,最初选择参数时只使用了5000的数据集,这也会影响我们的判断。

        梯度下降算法的每次迭代都会受到学习率的影响:

  • 如果学习率过小,那达到模型收敛所需要的迭代次数会非常高,训练时间会增加,且模型容易欠拟合;
  • 如果学习率过大,那模型每次学习步长就会增大,很难达到最小值;

2.2 设计盐数据速度模型展示图

三、下周计划

  1. 继续完成实验,并完善论文;
  2. 准备组会分享内容;
  3. 思考类似于热力图的展示图;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值