基于Deepseek和Langchain的cp文学生成器(上)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

随着ai的发展,ai-agent变得越来越常见。因为磕cp的时候,很难找到符合自己心意的cp文学,本文介绍了一种基于Langchain和Deepseek的cp文学生成器,更加的私人定制,符合心意。

一、Langchain

LangChain 是一个开源框架,用于构建基于大型语言模型(LLM)的应用程序。LLM 是基于大量数据预先训练的大型深度学习模型,可以生成对用户查询的响应,例如回答问题或根据基于文本的提示创建图像。LangChain 提供各种工具和抽象,以提高模型生成的信息的定制性、准确性和相关性。例如,开发人员可以使用 LangChain 组件来构建新的提示链或自定义现有模板。LangChain 还包括一些组件,可让 LLM 无需重新训练即可访问新的数据集。
官方文档:[https://www.langchain.com/]

二、Langchain的基本组件

  • prompt:可选
    langchain中提供了可选择的Langchain Template,可以用于指导模型的相应,帮助理解上下文并生成相关的输出。
    同样在langchain中由几种不同类型的提示词模板:
  • 字符串提示词模板
    这些提示词模板用于格式化单个字符串,通常可以更简单的输入。
from langchain_core.prompts import PromptTemplate

prompt_template = PromptTemplate.from_template("Tell me a joke about {topic}")

prompt_template.invoke({
   "topic": "cats"})
  • 聊天提示词模板
    这些提示词模板用于格式化消息列表。不仅如此,使用这种模板可以设置system,即设置模型的语言风格。
from langchain_core.prompts import ChatPromptTemplate

prompt_template = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful assistant"),
    ("user", "Tell me a joke about {topic}")
])

prompt_template.invoke({
   "topic": "cats"})

在上述示例中,当调用此 ChatPromptTemplate 时,将构造两个消息。 第一个是系统消息,没有变量需要格式化。 第二个是 HumanMessage,将由用户传入的 topic 变量进行格式化。输出结果如下图所示:
在这里插入图片描述

  • Retriever
    检索器是一个接口,给定非结构化查询返回文档。 它比向量存储更为通用。 检索器不需要能够存储文档,只需返回(或检索)它们。 检索器可以从向量存储创建,但也足够广泛,包括维基百科搜索和亚马逊Kendra。

    检索器接受字符串查询作为输入,并返回文档列表作为输出。

  • Model
    Langchain 支持多种模型,均可在Langchain中的openAI部分找到。

  • Parser
    LangChain 有许多不同类型的输出解析器。这是 LangChain 支持的输出解析器列表。下表包含各种信息:

    • 名称: 输出解析器的名称
    • 支持流式处理: 输出解析器是否支持流式处理。
    • 有格式说明: 输出解析器是否有格式说明。通常在以下情况下可用: (a) 所需的模式未在提示中指定,而是在其他参数中(如 OpenAI 函数调用),或 (b) 当 OutputParser 包装另一个 OutputParser 时。
    • 调用 LLM: 此输出解析器是否自己调用大型语言模型。通常只有那些试图纠正格式错误输出的输出解析器才会这样做。
    • 输入类型: 预期的输入类型。大多数输出解析器适用于字符串和消息,但某些(如 OpenAI 函数)需要带有特定关键字参数的消息。
    • 输出类型: 解析器返回的对象的输出类型。
    • 描述: 我们对这个输出解析器的评论以及何时使用它。
      Langchain 支持多种信息流的输出,如json、xml格式。
  • 工具
    工具是设计用于被模型调用的实用程序:它们的输入旨在由模型生成,输出旨在返回给模型。 每当您希望模型控制代码的某些部分或调用外部API时,都需要工具。
    一个工具由以下部分组成:

    • 工具的名称。
    • 工具的 描述。
    • 定义工具输入的 JSON schema。
    • 一个 函数(可选地&#
### Deepseek Langchain 的路由链实现与配置 #### 1. 构建 Prompt 工程 为了有效利用 Deepseek Langchain 进行 cp 学生成或其他复杂任务,Prompt 工程至关重要。这涉及到设计高质量的提示词来引导模型生成预期的结果[^1]。 #### 2. 使用 FastAPI 部署 Chain 通过 `add_routes` 函数可以将 Langchain 中定义好的 Chain 对象部署成 FastAPI 应用程序中的一个路由。这意味着可以通过发送 HTTP 请求的方式调用来执行特定的任务逻辑[^2]。 ```python from fastapi import FastAPI, Request import uvicorn from langchain.chains import LLMChain from pydantic import BaseModel app = FastAPI() class Query(BaseModel): input_text: str @app.post("/run_chain") async def run_chain(request: Request, query: Query): chain = LLMChain(llm=llm_model, prompt=prompt_template) result = await chain.arun(query.input_text) return {"output": result} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000) ``` 这段代码展示了如何创建一个简单的 Web API 来接收输入并返回由指定 Chain 处理后的输出。这里假设已经有了预训练的语言模型 (`llm_model`) 及其对应的模板 (`prompt_template`)。 #### 3. 版本兼容性考虑 考虑到 Pydantic 不同版本之间的差异可能影响到应用程序的功能稳定性,在实际项目实施过程中需要注意选择合适版本组合以确保最佳性能表现。对于当前环境而言,推荐使用 Pydantic v1 直至 LangChain 官方正式支持更高版本为止[^4]。 #### 4. 实战案例学习 参考书籍《LangChain大模型AI应用开发实践》,其中提供了大量有关于如何运用这些技术栈的具体实例分析以及解决方案探讨,有助于加深理解并应用于具体场景之中[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值