目录
1.1创建yolov5s_shufflent_v2_X0_5.yaml文件
1.网络结构解析
1.可以先看看shufflenet_v2的网络结构
import torch
from torch import nn
from torchvision import models
from torchinfo import summary
class shufflenet_v2_x0_5(nn.Module):
def __init__(self,n):
super().__init__()
model = models.shufflenet_v2_x0_5(pretrained=True)
self.model=model
def forward(self, x):
return self.model(x)
if __name__ == '__main__':
x=torch.randn(1,3,640,640)
net=shufflenet_v2_x0_5(0)
out=net(x)
print(out.shape)
summary(net,(1,3,640,640))
这个是YOLOV5的网络。框出来的是yolov5的主干网络。我们用shufflenet_v2的部分替换。可以直接把shufflenet_v2的网络截取出三部分
定义
下图的右边部分是网络shufflenet的官方网络结构,直接使用即可。
定义我们自己需要修改的shufflenet类
import torch
from torch import nn
from torchvision import models
from torchinfo import summary
class Shufflenet_v2_x0_5(nn.Module):
def __init__(self,n):
super().__init__()
model = models.shufflenet_v2_x0_5(pretrained=True)
if n==1:
layer=[]
layer+=[model.conv1]
layer+=[model.maxpool]
layer+=[model.stage2]
self.model=nn.Sequential(*layer)
if n==2:
self.model=model.stage3
if n==3:
layer=[]
layer+=[model.stage4]
layer+=[model.conv5]
self.model = nn.Sequential(*layer)
def forward(self, x):
return self.model(x)
if __name__ == '__main__':
x=torch.randn(1,3,640,640)#torch.Size([1, 48, 80, 80])
net=Shufflenet_v2_x0_5(1)
out=net(x)
print(out.shape)
x1=torch.randn(1,48,80,80)#torch.Size([1, 96, 40, 40])
net1 = Shufflenet_v2_x0_5(2)
out1 = net1(x1)
print(out1.shape)
x2=torch.randn(1, 96, 40, 40)#torch.Size([1, 1024, 20, 20]
net2 = Shufflenet_v2_x0_5(3)
out2 = net2(x2)
print(out2.shape)
# summary(net,(1,3,640,640))
1.1创建yolov5s_shufflent_v2_X0_5.yaml文件
照着上面的网络对齐修改
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1,Shufflenet_v2_x0_5, [48, 1]], # 0-P1/2
[-1, 1,Shufflenet_v2_x0_5, [96,2]], # 1-P2/4
[-1, 1,Shufflenet_v2_x0_5, [1024,3]],
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 1], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 0], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 7], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 3], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[10, 13, 16], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
2.对common.py末尾进行添加
位置如下:
class Shufflenet_v2_x0_5(nn.Module):
def __init__(self,n):
super().__init__()
model = models.shufflenet_v2_x0_5(pretrained=True)
if n==1:
layer=[]
layer+=[model.conv1]
layer+=[model.maxpool]
layer+=[model.stage2]
self.model=nn.Sequential(*layer)
if n==2:
self.model=model.stage3
if n==3:
layer=[]
layer+=[model.stage4]
layer+=[model.conv5]
self.model = nn.Sequential(*layer)
def forward(self, x):
return self.model(x)
3.修改yolo.py
解析参数,并运行
elif m is Shufflenet_v2_x0_5: c2=args[0] args=args[1:] 'yolov5s_shufflent_v2_X0_5.yaml'
打印网络参数如下: