摘要
随着全球农业生产需求的不断增长,病虫害的监测与识别成为保障农作物产量和质量的重要任务。传统的病虫害检测方法多依赖于人工观察与专家判断,不仅耗时耗力,而且容易受主观因素影响。本文提出了一种基于深度学习的农作物病虫害检测识别系统,旨在通过图像处理技术与机器学习算法,实现对农作物病虫害的自动识别与分类。
在系统设计中,本文首先构建了一个包含多种农作物病虫害的图像数据集,涵盖了常见病虫害及其症状。通过数据增强技术提升数据的多样性,以提高模型的泛化能力。采用卷积神经网络(CNN)作为核心识别模型,结合迁移学习技术,从预训练模型中提取特征,显著提高了识别的准确性与效率。
实验结果表明,所提出的系统在公开数据集上的分类准确率超过了90%,并能够在手机端实现实时监测功能,为农民提供了便捷的病虫害识别工具。最后,本文讨论了系统的应用前景,认为基于深度学习的农作物病虫害检测识别技术将在精准农业、智能农机和农业物联网等领域发挥重要作用。
论文提纲
-
引言
- 1.1 研究背景
- 1.2研究内容
- 1.3研究目的和意义
-
系统相关技术
- 2.1 深度学习基础
- 2.2 图像处理技术
- 2.3 迁移学习
- 2.4 模型评估指标
-
数据集构建与预处理
- 3.1 数据源与数据集设计
- 3.2 数据标注与分类
- 3.3 数据增强策略及实现
-
模型设计与实现
- 4.1 深度卷积神经网络架构
- 4.2 模型训练与优化
- 4.3 超参数调整与验证