输入:
10 10
1 10
2 10
3 10
4 10
5 10
6 10
7 10
8 10
9 10
10 10
输出:
1 2 2
思路: 核心:差分前缀和
上手看区间,差分一波,然后求前缀和,逐个看ac的题数,再根据金银牌数量分配,不过区间一多然后一长就tle了。
这里要对区间进行离散操作,假如有区间[1,10000]求前缀和需要从1加到10000,因为最后也不用求出具体哪个队伍的ac题数,其实只要统计区间长度即可,对每个区间编号,统计区间长度,优化算法。
//离散+差分+前缀和
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int cnt[100010]; //做出i个题的人数
struct ty
{
int pos,num; //存区间下标和是加1还是减1
}a[200010];
bool cmp(ty a, ty b) //将点按照从左往右,先减后加排序
{
if( a.pos!= b.pos) return a.pos< b.pos;
else return a.num<b.num;
}
int main()
{
int n,m;
cin>>n>>m;
for(int i=1 ;i<=m ;i++)
{
int l,r;//离散化
cin>>l>>r;
a[i].num=1; //左端点
a[i].pos=l;
a[i+m].num=-1; //右端点
a[i+m].pos=r+1; //差分,往后一位
}
//将2m个点排序
sort(a+1,a+1+m+m,cmp);
int sum=0; //记录目前ac的题数
int maxn=1; //ac最多题的人数
for(int i=1 ;i<=m+m; i++)
{
//看区间两端
if( a[i].pos -a[i-1].pos!=0 )
cnt[sum]+=a[i].pos-a[i-1].pos; //记录ac sum道题的人数
sum+=a[i].num;
maxn=max(maxn,sum); //更新最大
}
int j=-1 ,y=-1 ,t=-1;
for(int i=maxn ;i>=0 ;i--)
{
cnt[i]+=cnt[i+1]; //前缀和,大于等于i题的人数
if( j==-1 && (cnt[i] >= (n+9)/10) ) j=i;
if( y==-1 && (cnt[i] >= (n+3)/4) ) y=i;
if( t==-1 && (cnt[i] >= (n+1)/2) ) t=i;
}
//因为获得奖牌的必要条件是ac一题
j=max(j,1);
y=max(y,1);
t=max(t,1);
cout<<cnt[j]<<" "<<cnt[y]-cnt[j]<<" "<<cnt[t]-cnt[y];
}