《初等数论》:逐步淘汰原则、欧拉函数、简化剩余系

逐步淘汰原则

逐步淘汰原则又称容斥原理

设有   N   \,N\, N件事物,其中   N a i   ( 1 ≤ i ≤ s )   \,\begin{aligned}N_{a_i}\,(1 \le i \le s)\end{aligned}\, Nai(1is)件具有性质   a i   \,a_i\, ai   N a i a j   ( 1 ≤ i < j ≤ s )   \,\begin{aligned}N_{a_ia_j}\end{aligned}\,(1 \le i \lt j \le s)\, Naiaj(1i<js)件具有性质   i , j   \,i,j\, i,j,…,   N a 1 a 2 ⋯ a s   \,\begin{aligned}N_{a_1a_2\cdots a_s}\end{aligned}\, Na1a2as件具有性质   a 1 , a 2 , ⋯   , a s   \,a_1,a_2,\cdots,a_s\, a1,a2,,as。那么这N件事物之中不具有性质   a 1 , a 2 , ⋯   , a s   \,a_1,a_2,\cdots,a_s\, a1,a2,,as的事物的件数为   N − ( N a 1 + N a 2 + ⋯ + N a s ) + ( N a 1 a 2 + N a 1 a 3 + ⋯ + N a ( s − 1 ) a s ) − ( N a 1 a 2 a 3 + ⋯ + N a ( s − 2 ) a ( s − 1 ) a s ) + ⋯ + ( − 1 ) s N a 1 a 2 ⋯ a s   \,\begin{aligned}N-(N_{a_1}+N_{a_2}+\cdots+N_{a_s})+(N_{a_1a_2}+N_{a_1a_3}+\cdots+N_{a_{(s-1)}a_s})-(N_{a_1a_2a_3}+\cdots+N_{a_{(s-2)}a_{(s-1)}a_s})+\cdots+(-1)^sN_{a_1a_2\cdots a_s}\end{aligned}\, N(Na1+Na2++Nas)+(Na1a2+Na1a3++Na(s1)as)(Na1a2a3++Na(s2)a(s1)as)++(1)sNa1a2as

简 单 证 明 : 用   P   表 示   N   件 事 物 中 具 有   k   种 性 质   a 1 , a 2 , ⋯   , a k   的 某 件 事 物   ( 1 ≤ k ≤ s )   , 则 事 物   P   在   N   中 出 现   1   次 ; 在   N a 1 , N a 2 , ⋯   , N a s   中 出 现   k   次 ; 在   N a 1 a 2 , N a 1 a 3 , ⋯   , N a ( s − 1 ) a s   中 出 现   C k 2   次 ; 在   N a 1 a 2 a 3 , ⋯   , N a ( s − 2 ) a ( s − 1 ) a s   中 出 现   C k 3   次 ; ⋯ 所 以 事 物   P   在 式 子 中 出 现 的 次 数 为   1 − k + C k 2 − C k 3 + ⋯ + ( − 1 ) k C k k = ( 1 − 1 ) k = 0   用   Q   表 示   N   件 事 物 中 , 不 具 有 性 质   a 1 , a 2 , ⋯   , a s   的 某 件 事 物 , 则 事 物   Q   在   N   中 出 现   1   次 ; 在   N a 1 , N a 2 , ⋯   , N a s   出 现   0   次 ; 在   N a 1 a 2 , N a 1 a 3 , ⋯   , N a ( s − 1 ) a s   中 出 现   0   次 ; 在   N a 1 a 2 a 3 , ⋯   , N a ( s − 2 ) a ( s − 1 ) a s   出 现   0   次 ; ⋯ 所 以 事 物   Q   在 式 子 中 出 现   1   次 。 由 于 具 有   k   ( ≥ 1 )   种 性 质 的 事 物   P   在 式 子 中 不 出 现 , 而 不 具 有 性 质   a 1 , a 2 , a 3 , ⋯   , a s   的 事 物   Q   中 出 现   1   次 , 所 以 命 题 成 立 。 简单证明:用\,P\,表示\,N\,件事物中具有\,k\,种性质\,a_1,a_2,\cdots,a_k\,的某件事物\,(1\le k \le s)\,,则事物\,P\,在\,N\,中出现\,1\,次; \\在\,N_{a_1},N_{a_2},\cdots,N_{a_s}\,中出现\,k\,次;在\,N_{a_1a_2},N_{a_1a_3},\cdots,N_{a_{(s-1)}a_s}\,中出现\,C_k^2\,次;\\在\,N_{a_1a_2a_3},\cdots,N_{a_{(s-2)}a_{(s-1)}a_s}\,中出现\,C_k^3\,次;\\\cdots\\所以事物\,P\,在式子中出现的次数为\,1-k+C_k^2-C_k^3+\cdots+(-1)^kC_k^k=(1-1)^k=0\,\\ 用\,Q\,表示\,N\,件事物中,不具有性质\,a_1,a_2,\cdots,a_s\,的某件事物,则事物\,Q\,在\,N\,中出现\,1\,次;\\ 在\,N_{a_1},N_{a_2},\cdots,N_{a_s}\,出现\,0\,次; 在\,N_{a_1a_2},N_{a_1a_3},\cdots,N_{a_{(s-1)}a_s}\,中出现\,0\,次; \\ 在\,N_{a_1a_2a_3},\cdots,N_{a_{(s-2)}a_{(s-1)}a_s}\,出现\,0\,次; \\ \cdots \\所以事物\,Q\,在式子中出现\,1\,次。\\ 由于具有\,k\,(\ge 1)\,种性质的事物\,P\,在式子中不出现,而不具有性质\,a_1,a_2,a_3,\cdots,a_s\,的事物\,Q\,中出现\,1\,次,\\ 所以命题成立。 PNka1,a2,,ak(1ks),PN1;Na1,Na2,,Nask;Na1a2,Na1a3,,Na(s1)asCk2;Na1a2a3,,Na(s2)a(s1)asCk3;P1k+Ck2Ck3++(1)kCkk=(11)k=0QN,a1,a2,,as,QN1;Na1,Na2,,Nas0;Na1a2,Na1a3,,Na(s1)as0;Na1a2a3,,Na(s2)a(s1)as0;Q1k(1)P,a1,a2,a3,,asQ1,

这与 概率论与数理统计概率加法公式 有异曲同工之妙:对于任意   n   \,n\, n个事件   A 1 , A 2 , ⋯   , A n   , 有 :   P ( A 1 ⋃ A 2 ⋃ ⋯ ⋃ A n ) = ∑ i = 1 n P ( A i ) − ∑ 1 ≤ i < j ≤ n P ( A i A j ) + ∑ 1 ≤ i < j < k ≤ n P ( A i A j A k ) − ⋯ + ( − 1 ) n − 1 P ( A 1 A 2 ⋯ A n )   设   P ( A i )   ( 1 ≤ i ≤ s )   为   N   件 事 物 中 具 有 性 质   a i   的 概 率 ,   P ( A i A j )   ( 1 ≤ i < j ≤ s )   为   N   件 事 物 中 具 有 性 质   a i , a j   的 概 率 , ⋯   , P ( A 1 A 2 ⋯ A s ) 为   N   件 事 物 中 具 有 性 质   a 1 , a 2 , ⋯   , a s   的 概 率 , 则 不 具 有 性 质   a 1 , a 2 , ⋯   , a s   的 概 率 表 示 为   P ( A 1 ˉ A 2 ˉ ⋯ A s ˉ ) = 1 − P ( A 1 ⋃ A 2 ⋃ ⋯ ⋃ A s ) = 1 − ∑ i = 1 n P ( A i ) + ∑ 1 ≤ i < j ≤ s P ( A i A j ) − ∑ 1 ≤ i < j < k ≤ s P ( A i A j A k ) + ⋯ + ( − 1 ) n P ( A 1 A 2 ⋯ A s )   \,A_1,A_2,\cdots,A_n\,,有:\\ \,\begin{aligned}P(A_1 \bigcup A_2 \bigcup \cdots \bigcup A_n)=\sum_{i=1}^nP(A_i)-\sum_{1 \le i \lt j \le n}P(A_iA_j)+\sum_{1 \le i \lt j \lt k \le n}P(A_iA_jA_k)-\cdots+(-1)^{n-1}P(A_1A_2\cdots A_n)\end{aligned}\, \\ 设\,P(A_i)\,(1 \le i \le s)\,为\,N\,件事物中具有性质\,a_i\,的概率,\,P(A_iA_j)\,(1 \le i \lt j \le s)\,为\,N\,件事物中具有性质\,a_i,a_j\,的概率,\cdots,\\P(A_1A_2\cdots A_s)为\,N\,件事物中具有性质\,a_1,a_2,\cdots,a_s\,的概率,则不具有性质\,a_1,a_2,\cdots,a_s\,的概率表示为\\\,P(\bar{A_1}\bar{A_2}\cdots \bar{A_s})=1-P(A_1 \bigcup A_2 \bigcup \cdots \bigcup A_s) \\ =1-\begin{aligned}\sum_{i=1}^nP(A_i)+\sum_{1 \le i \lt j \le s}P(A_iA_j)-\sum_{1 \le i \lt j \lt k \le s}P(A_iA_jA_k)+\cdots+(-1)^{n}P(A_1A_2\cdots A_s)\end{aligned}\, A1,A2,,An,P(A1A2An)=i=1nP(Ai)1i<jnP(AiAj)+1i<j<knP(AiAjAk)+(1)n1P(A1A2An)P(Ai)(1is)Nai,P(AiAj)(1i<js)Nai,aj,,P(A1A2As)Na1,a2,,as,a1,a2,,asP(A1ˉA2ˉAsˉ)=1P(A1A2As)=1i=1nP(Ai)+1i<jsP(AiAj)1i<j<ksP(AiAjAk)++(1)nP(A1A2As)

欧拉函数

定义

欧拉函数   φ ( m )   \,\varphi(m)\, φ(m)表示不超过正整数   m   \,m\, m且与   m   \,m\, m互质的正整数的个数。

  ε ( m )   \,\varepsilon(m)\, ε(m)表示不超过正整数   m   \,m\, m且与   m   \,m\, m互质的正整数( 共   φ ( m )   \,\varphi(m)\, φ(m)个 )之和。

定理

1、若正整数   m   \,m\, m的标准分解式为   m = p 1 a 1 p 2 a 2 ⋯ p k a k   , 则   φ ( m ) = ∏ i = 1 k ( p i a i − p i a i − 1 ) = m ∏ i = 1 k ( 1 − 1 p i )   \,m=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}\,,则\,\begin{aligned}\varphi(m)=\prod_{i=1}^k(p_i^{a_i}-p_i^{a_i-1})=m\prod_{i=1}^k(1-\dfrac{1}{p_i})\end{aligned}\, m=p1a1p2a2pkak,φ(m)=i=1k(piaipiai1)=mi=1k(1pi1)

证 : 用   N p 1   表 示   1 , 2 , ⋯   , m   中 不 与   p 1   互 质 的 正 整 数 个 数 ⋯ ⋯ 用   N p k   表 示 不 与   p k   互 质 的 正 整 数 个 数 ; 用   N p 1 p 2   表 示 不 与   p 1 , p 2   互 质 的 正 整 数 个 数 ⋯ ⋯ 用   N p ( k − 1 ) p k   表 示 不 与   p k − 1 , p k   互 质 的 正 整 数 个 数 ⋯ ⋯ 用   N p 1 ⋯ p k   表 示 不 与   p 1 , ⋯   , p k   互 质 的 正 整 数 个 数 。 显 然 N p 1 = m p 1   , ⋯   ,   N p k = m p k   ; ⋯   ;   N p 1 ⋯ p k = m p 1 ⋯ p k 由 逐 步 淘 汰 原 则 , 可 知   1 , 2 , ⋯   , m   中 与   m   互 质 的 正 整 数 个 数 为   φ ( m ) = m − N p 1 − ⋯ − N p k + N p 1 p 2 + ⋯ + N p ( k − 1 ) p k − N p 1 p 2 p 3 − ⋯ + ⋯ + ( − 1 ) k N p 1 ⋯ p k = m ∏ i = 1 k ( 1 − 1 p i )   证:用\,N_{p_1}\,表示\,1,2,\cdots,m\,中不与\,p_1\,互质的正整数个数\cdots\cdots用\,N_{p_k}\,表示不与\,p_k\,互质的正整数个数; \\ 用\,N_{p_1p_2}\,表示不与\,p_1,p_2\,互质的正整数个数\cdots\cdots用\,N_{p_{(k-1)}p_k}\,表示不与\,p_{k-1},p_k\,互质的正整数个数\cdots\cdots用\,N_{p_1\cdots p_k}\,表示 \\不与\,p_1,\cdots,p_k\,互质的正整数个数。显然 \\ N_{p_1}=\dfrac{m}{p_1}\,,\cdots,\,N_{p_k}=\dfrac{m}{p_k}\,;\cdots;\,N_{p_1\cdots p_k}=\dfrac{m}{p_1\cdots p_k} \\ 由逐步淘汰原则,可知\,1,2,\cdots,m\,中与\,m\,互质的正整数个数为\,\varphi(m)=m-N_{p_1}-\cdots-N_{p_k}+N_{p_1p_2}+\cdots+N_{p_{(k-1)}p_k}-N_{p_1p_2p_3}-\cdots+\cdots+(-1)^kN_{p_1\cdots p_k}=m\begin{aligned}\prod_{i=1}^k(1-\dfrac{1}{p_i})\end{aligned}\, Np11,2,,mp1Npkpk;Np1p2p1,p2Np(k1)pkpk1,pkNp1pkp1,,pkNp1=p1m,,Npk=pkm;;Np1pk=p1pkm,1,2,,mmφ(m)=mNp1Npk+Np1p2++Np(k1)pkNp1p2p3++(1)kNp1pk=mi=1k(1pi1)

推论:若   ( a   , b ) = 1   \,(a\,,b)=1\, (a,b)=1,则   φ ( a b ) = φ ( a ) φ ( b )   \,\varphi(ab)=\varphi(a)\varphi(b)\, φ(ab)=φ(a)φ(b)

还 有 一 个 比 较 可 视 化 的 证 明 : 证 : φ ( a b )   就 是 下 面 的   a   行   b   列 的 数 表 中 与   a b   互 质 的 数 的 个 数 : [ 1 2 ⋯ k ⋯ b b + 1 b + 2 ⋯ b + k ⋯ 2 b 2 b + 1 2 b + 2 ⋯ 2 b + k ⋯ 3 b ⋮ ⋮ ⋮ ⋮ ( a − 1 ) b + 1 ( a − 1 ) b + 2 ⋯ ( a − 1 ) b + k ⋯ a b ] 在 第 一 行 中 有   φ ( b )   个 数 与   b   互 质 , 其 余 的 数 不 与   b   互 质 。 每 个 不 与   b   互 质 的 数 , 所 在 的 列 中 , 每 一 个 数 都 不 与   b   互 质 , 因 此 也 不 与   a b   互 质 。 将 这 些 列 删 去 , 留 下 的 仅 有   φ ( b )   列 。   0 , 1 , ⋯   , a − 1   构 成 模   a   的 一 个 完 全 剩 余 系 , 由 于   ( a   , b ) = 1   , 因 此   0 ⋅ b + j , 1 ⋅ b + j , ⋯   , ( a − 1 ) b + j   , 也 是 模   a   的 完 全 剩 余 系   ( j = 1 , 2 , ⋯   , b )   , 与   0 , 1 , ⋯   , a − 1   一 样 , 其 中 有   φ ( a )   个 与   a   互 质 , 其 余 的 不 与   a   互 质 。 这 样 ,   φ ( b )   列 共 有   φ ( a ) φ ( b )   个 数 , 这 些 数 既 与   a   互 质 , 又 与   b   互 质 , 因 此 也 与   a b   互 质 。 故   φ ( a b ) = φ ( a ) φ ( b )   还有一个比较可视化的证明:\\证:\varphi(ab)\,就是下面的\,a\,行\,b\,列的数表中与\,ab\,互质的数的个数:\\ \\\qquad \qquad \left[ \begin{matrix} 1 & 2 & \cdots & k & \cdots & b \\ b+1 & b+2 & \cdots & b+k & \cdots & 2b \\ 2b+1 & 2b+2 & \cdots & 2b+k & \cdots & 3b \\ \vdots & \vdots & & \vdots & & \vdots \\ (a-1)b+1 & (a-1)b+2 & \cdots & (a-1)b+k & \cdots & ab \end{matrix} \right] \\\\ 在第一行中有\,\varphi(b)\,个数与\,b\,互质,其余的数不与\,b\,互质。每个不与\,b\,互质的数,所在的列中,每一个数都不与\,b\,互质,因此\\也不与\,ab\,互质。将这些列删去,留下的仅有\,\varphi(b)\,列。\,0,1,\cdots,a-1\,构成模\,a\,的一个完全剩余系,由于\,(a\,,b)=1\,,因此\\ \,0\cdot b+j,1\cdot b+j,\cdots,(a-1)b+j\,,也是模\,a\,的完全剩余系\,(j=1,2,\cdots,b)\,,与\,0,1,\cdots,a-1\,一样,其中有\,\varphi(a)\,个与\,a\,互质,其余的不与\,a\,互质。这样,\,\varphi(b)\,列共有\,\varphi(a)\varphi(b)\,个数,这些数既与\,a\,互质,又与\,b\,互质,\\因此也与\,ab\,互质。故\,\varphi(ab)=\varphi(a)\varphi(b)\, φ(ab)abab1b+12b+1(a1)b+12b+22b+2(a1)b+2kb+k2b+k(a1)b+kb2b3babφ(b)b,bb,,b,ab,φ(b)0,1,,a1a,(a,b)=1,0b+j,1b+j,,(a1)b+j,a(j=1,2,,b),0,1,,a1,φ(a)a,a,φ(b)φ(a)φ(b),a,b,abφ(ab)=φ(a)φ(b)

2、   m ≥ 2   \,m \ge 2\, m2,则   ε ( m ) = m 2 φ ( m )   \,\varepsilon(m)=\dfrac{m}{2}\varphi(m)\, ε(m)=2mφ(m)

证 : 容 易 证 明 若   ( m   , k ) = 1   , 那 么   ( m   , m − k ) = 1   。 设   k 1 , k 2 , ⋯   , k φ ( m )   为 不 超 过   m   且 与   m   互 质 的 正 整 数 的 全 体 , 则   m − k 1 , m − k 2 , ⋯   , m − k φ ( m )   也 是 不 超 过   m   且 与   m   互 质 的 正 整 数 的 全 体 。 于 是   ε ( m ) = k 1 + k 2 + ⋯ + k φ ( m ) ( 1 )   ,   ε ( m ) = ( m − k 1 ) + ( m − k 2 ) + ⋯ + ( m − k φ ( m ) ) ( 2 )   , 把   ( 1 ) , ( 2 ) 式 相 加 , 得   2 ε ( m ) = φ ( m ) ⋅ m   , 则 命 题 成 立 。 证:容易证明若\,(m\,,k)=1\,,那么\,(m\,,m-k)=1\,。设\,k_1,k_2,\cdots,k_{\varphi(m)}\,为不超过\,m\,且与\,m\,互质的正整数的全体,则\,m-k_1,m-k_2,\cdots,m-k_{\varphi(m)}\,也是不超过\,m\,且与\,m\,互质的正整数的全体。于是\,\varepsilon(m)=k_1+k_2+\cdots+k_{\varphi(m)} \quad (1)\,,\,\varepsilon(m)=(m-k_1)+(m-k_2)+\cdots+(m-k_{\varphi(m)}) \quad (2)\,,把\,(1),(2)式相加,得\,2\varepsilon(m)=\varphi(m)\cdot m\,,则命题成立。 (m,k)=1,(m,mk)=1k1,k2,,kφ(m)mm,mk1,mk2,,mkφ(m)mmε(m)=k1+k2++kφ(m)(1),ε(m)=(mk1)+(mk2)++(mkφ(m))(2),(1),(2),2ε(m)=φ(m)m,

例题

  •   n = d m   \,n=dm\, n=dm,证明:小于   n   \,n\, n且与   n   \,n\, n的最大公因数为   d   \,d\, d的正整数共有   φ ( m )   个 。 \,\varphi(m)\,个。 φ(m)
  •   ( m   , n ) = p   \,(m\,,n)=p\, (m,n)=p,试证:   φ ( m n ) = p p − 1 φ ( m ) φ ( n )   \,\varphi(mn)=\dfrac{p}{p-1}\varphi(m)\varphi(n)\, φ(mn)=p1pφ(m)φ(n)
    证 : 不 妨 设   m = p a k   ,   n = p l   , 这 里   a ≥ 1   , 且   ( p   , k ) = 1   ,   ( p   , l ) = 1   ,   ( k   , l ) = 1   。 于 是   φ ( m n ) = φ ( p a + 1 k l ) = φ ( p a + 1 ) φ ( k ) φ ( l ) = p a ( p − 1 ) φ ( k ) φ ( l ) = p p − 1 ⋅ p a − 1 ( p − 1 ) φ ( k ) ⋅ ( p − 1 ) φ ( l ) = p p − 1 ⋅ φ ( p a ) φ ( k ) ⋅ φ ( p ) φ ( l ) = p p − 1 φ ( m ) φ ( n )   证:不妨设\,m=p^ak\,,\,n=pl\,,这里\,a \ge 1\,,且\,(p\,,k)=1\,,\,(p\,,l)=1\,,\,(k\,,l)=1\,。于是\,\varphi(mn)=\varphi(p^{a+1}kl)=\varphi(p^{a+1})\varphi(k)\varphi(l)=p^a(p-1)\varphi(k)\varphi(l)=\dfrac{p}{p-1}\cdot p^{a-1}(p-1)\varphi(k)\cdot(p-1)\varphi(l)=\dfrac{p}{p-1}\cdot \varphi(p^a)\varphi(k)\cdot \varphi(p)\varphi(l)=\dfrac{p}{p-1}\varphi(m)\varphi(n)\, m=pak,n=pl,a1,(p,k)=1,(p,l)=1,(k,l)=1φ(mn)=φ(pa+1kl)=φ(pa+1)φ(k)φ(l)=pa(p1)φ(k)φ(l)=p1ppa1(p1)φ(k)(p1)φ(l)=p1pφ(pa)φ(k)φ(p)φ(l)=p1pφ(m)φ(n)
  •   n ≥ 2   \,n \ge 2\, n2,试证:   n   \,n\, n为质数的充要条件是   φ ( n ) ∣ ( n − 1 )   \,\varphi(n) \mid (n-1)\, φ(n)(n1)   ( n + 1 ) ∣ σ ( n )   \,(n+1) \mid \sigma(n)\, (n+1)σ(n),这里   σ ( n )   \,\sigma(n)\, σ(n)指的是   n   \,n\, n的正因数之和。
    证 : 当   n = 2   时 , 结 论 显 然 成 立 。 下 证   n ≥ 3   。 ( 1 )   必 要 性 : 若   n   为 质 数 , 则   φ ( n ) = n − 1   , σ ( n ) = n + 1   , 因 此 有   φ ( n ) ∣ ( n − 1 )   且   ( n + 1 ) ∣ σ ( n )   ; ( 2 )   充 分 性 : 由   φ ( n ) ∣ ( n − 1 )   ( n ≥ 3 )   , 知   n   为 奇 数 。 若   p k ∣ n   ( k > 1 )   , 则   p k − 1 ∣ φ ( n )   , 即   p k − 1 ∣ n − 1   , 矛 盾 。 从 而   n   无 平 方 因 数 。 故 设   n = p 1 ⋯ p l   , p i   ( 1 ≤ i ≤ l )   是 互 不 相 同 的 奇 质 数 , 则 有    φ ( n ) = ∏ i = 1 l ( p i − 1 )   ,   σ ( n ) = ∏ i = 1 l ( p i − 1 )   , 若   l > 1   , 则   2 l ∣ φ ( n )   , 2 l ∣ σ ( n )   , 注 意 到   4 ∣ φ ( n )   , 故   4 ∣ ( n − 1 )   , 则   4 ∤ ( n + 1 )   , 于 是 由 于   m = ( n + 1 ) 2 为 整 数 ,   m ∣ σ ( n )   ,   ( m   , 2 l ) = 1   , 故   m ⋅ 2 l ∣ σ ( n )   , 则   2 l − 1 ∣ σ ( n ) n + 1   , 但   2 l − 1 ≤ σ ( n ) n + 1 < σ ( n ) n = ∏ i = 1 l ( 1 + 1 p i ) ≤ ( 4 3 ) l   , 上 式 当   l > 1   时 不 成 立 , 故   l = 1   , 即   n   为 质 数 。 证:当\,n = 2\,时,结论显然成立。下证\,n \ge 3\,。(1)\,必要性:若\,n\,为质数,则\,\varphi(n)=n-1\,,\sigma(n)=n+1\,,因此有\,\varphi(n) \mid (n-1)\,且\,(n+1) \mid \sigma(n)\,;(2)\,充分性:由\,\varphi(n) \mid (n-1)\,(n \ge 3)\,,知\,n\,为奇数。若\,p^k \mid n\,(k \gt 1)\,,则\,p^{k-1} \mid \varphi(n)\,,即\,p^{k-1} \mid n-1\,,矛盾。从而\,n\,无平方因数。故设\,n=p_1\cdots p_l\,,p_i\,(1 \le i \le l)\,是互不相同的奇质数,则有\,\,\varphi(n)=\begin{aligned}\prod_{i=1}^l(p_i-1)\end{aligned}\,,\,\sigma(n)=\begin{aligned}\prod_{i=1}^l(p_i-1)\end{aligned}\,,若\,l \gt 1\,,则\,2^l \mid \varphi(n)\,,2^l \mid \sigma(n)\,,注意到\,4 \mid \varphi(n)\,,故\,4 \mid (n-1)\,,则\,4 \nmid (n+1)\,,于是由于\,m=\dfrac{(n+1)}{2}为整数,\,m \mid \sigma(n)\,,\,(m\,,2^l)=1\,,故\,m\cdot2^l \mid \sigma(n)\,,则\,2^{l-1} \mid \dfrac{\sigma(n)}{n+1}\,,但\,2^{l-1} \le \dfrac{\sigma(n)}{n+1} \lt \dfrac{\sigma(n)}{n}=\begin{aligned}\prod_{i=1}^l(1+\dfrac{1}{p_i})\le (\dfrac{4}{3})^l\end{aligned}\,,上式当\,l \gt 1\,时不成立,故\,l=1\,,即\,n\,为质数。 n=2n3(1)n,φ(n)=n1,σ(n)=n+1,φ(n)(n1)(n+1)σ(n);(2)φ(n)(n1)(n3),npkn(k>1),pk1φ(n),pk1n1,nn=p1pl,pi(1il),φ(n)=i=1l(pi1),σ(n)=i=1l(pi1),l>1,2lφ(n),2lσ(n),4φ(n),4(n1),4(n+1),m=2(n+1),mσ(n),(m,2l)=1,m2lσ(n),2l1n+1σ(n),2l1n+1σ(n)<nσ(n)=i=1l(1+pi1)(34)l,l>1,l=1,n
  •   n ≥ 1   \,n \ge 1\, n1,试证:   ∑ d   ∣   n φ ( d ) = n   \,\begin{aligned}\sum_{d \,\mid\, n}\varphi(d)=n\end{aligned}\, dnφ(d)=n
    证 1 ( 数 学 归 纳 法 的 思 想 ) : 当   n = p k   (   p   为 质 数 ,   k   为 整 数 , 且   k ≥ 0 )   时 , ∑ d   ∣   n φ ( d ) = p k − p k − 1 + p k − 1 − p k − 2 + ⋯ + p 2 − p + p − 1 + 1 = p k = n   设   n = p 1 k 1 p 2 k 2 ⋯ p i k i   ( i ≥ 2 )   ,   n j = p j k j   ( 1 ≤ j ≤ i   ,   p j   为 质 数 )   , 由 于   ( n j , n t ) = 1   ( 1 ≤ j , t ≤ i   , 且   j ≠ t   )    , 故 对 于 任 意 的   d 1 ∣ n j   ,   d 2 ∣ n t   , 有   ( d 1 , d 2 ) = 1   , 而   d = d 1 d 2 ∣ n   , 故 由 定 理   1   推 论 得   φ ( d ) = φ ( d 1 d 2 ) = φ ( d 1 ) φ ( d 2 )   于 是   ∑ d   ∣   n φ ( d ) = ∏ j = 1 i ( ∑ d ′   ∣   n j d ′ ) = ∏ j = 1 i n i = n 证1(数学归纳法的思想):当\,n=p^k\,(\,p\,为质数,\,k\,为整数,且\,k \ge 0)\,时,\\\begin{aligned}\sum_{d \,\mid\, n}\varphi(d)=p^k-p^{k-1}+p^{k-1}-p^{k-2}+\cdots+p^2-p+p-1+1=p^k=n\end{aligned}\,\\设\,n=p_1^{k_1}p_2^{k_2}\cdots p_i^{k_i}\,(i \ge 2)\,,\,n_j=p_j^{k_j}\,(1 \le j \le i\,,\,p_j\,为质数)\,,由于\,(n_j,n_t)=1\,(1 \le j,t\le i\,,且\,j \ne t\,)\,\,,故对于任意的\,d_1 \mid n_j\,,\,d_2 \mid n_t\,,有\,(d_1,d_2)=1\,,而\,d=d_1d_2 \mid n\,,故由定理\,1\,推论得\,\varphi(d)=\varphi(d_1d_2)=\varphi(d_1)\varphi(d_2)\,\\于是\,\begin{aligned}\sum_{d \,\mid\, n}\varphi(d)=\prod_{j=1}^i(\sum_{d' \,\mid\, n_j}d')=\prod_{j=1}^in_i=n\end{aligned} 1()n=pk(p,k,k0),dnφ(d)=pkpk1+pk1pk2++p2p+p1+1=pk=nn=p1k1p2k2piki(i2),nj=pjkj(1ji,pj)(nj,nt)=1(1j,ti,j=t),d1nj,d2nt,(d1,d2)=1,d=d1d2n,1φ(d)=φ(d1d2)=φ(d1)φ(d2)dnφ(d)=j=1i(dnjd)=j=1ini=n
    证 2 ( 集 合 论 的 思 想 ) : 考 虑 整 数   1 , 2 , ⋯   , n   , 根 据 它 们 与   n   的 最 大 公 因 数 分 类 , 即 若   ( a   , n ) = d   , 则 将   a   归 入 类   C d   中 ( 比 如   n = 6   时 ,   1 , 2 , 3 , 4 , 5 , 6   被 分 为 以 下   4   类 : C 1 = { 1   , 5 } , C 2 = { 2 , 4 } , C 3 = { 3 } , C 6 = { 6 } ) , 于 是 得 n = ∑ d   ∣   n (   C d   的 元 素 个 数 )   由 于   ( a   , n ) = d   , 即   ( a d   , n d ) = 1   , 而   a d   的 个 数 就 是   1 , 2 , ⋯   , n d   中 与   n d   互 质 的 数 的 个 数 , 即   φ ( n d )   。 于 是   C d   中 的 元 素 个 数 为   φ ( n d )   , 从 而   n = ∑ d   ∣   n φ ( n d )   当   d   取 遍   n   的 因 数 时 ,   n d   也 取 遍   n   的 因 数 , 因 此 命 题 成 立 。 证2(集合论的思想):考虑整数\,1,2,\cdots,n\,,根据它们与\,n\,的最大公因数分类,即若\,(a\,,n)=d\,,则将\,a\,归入类\,C_d\,中(比如\,n=6\,时,\,1,2,3,4,5,6\,被分为以下\,4\,类:C_1=\{1\,,5\},C_2=\{2,4\},C_3=\{3\},C_6=\{6\}),于是得\\ \qquad \qquad \begin{aligned}n=\sum_{d \,\mid\, n}(\,C_d\,的元素个数)\end{aligned}\,\\由于\,(a\,,n)=d\,,即\,(\dfrac{a}{d}\,,\dfrac{n}{d})=1\,,而\,\dfrac{a}{d}\,的个数就是\,1,2,\cdots,\dfrac{n}{d}\,中与\,\dfrac{n}{d}\,互质的数的个数,即\,\varphi(\dfrac{n}{d})\,。\\ 于是\,C_d\,中的元素个数为\,\varphi(\dfrac{n}{d})\,,从而\\ \qquad \qquad\,\begin{aligned}n=\sum_{d \,\mid\, n}\varphi(\dfrac{n}{d})\end{aligned}\, \\当\,d\,取遍\,n\,的因数时,\,\dfrac{n}{d}\,也取遍\,n\,的因数,因此命题成立。 2()1,2,,n,n,(a,n)=d,aCd(n=6,1,2,3,4,5,64C1={1,5},C2={2,4},C3={3},C6={6}),n=dn(Cd)(a,n)=d,(da,dn)=1,da1,2,,dndn,φ(dn)Cdφ(dn),n=dnφ(dn)dn,dnn,
  •   d ( n ) , σ ( n ) , φ ( n )   \,d(n),\sigma(n),\varphi(n)\, d(n),σ(n),φ(n)分别表示正整数   n   \,n\, n的正因数个数、正因数之和与欧拉函数,试证:   n   \,n\, n为质数的充要条件是   σ ( n ) + φ ( n ) = n ⋅ d ( n )   \,\sigma(n)+\varphi(n)=n \cdot d(n)\, σ(n)+φ(n)=nd(n)
    提 示 : 设   n = p 1 a 1 p 2 a 2 ⋯ p k a k   ( k ≥ 1   ,   1 ≤ i ≤ k   ,   a i ≥ 0   )   , 则   d ( n ) = ( a 1 + 1 ) ( a 2 + 1 ) ⋯ ( a k + 1 )   ,   σ ( n ) = ( 1 + p 1 + p 1 2 + ⋯ + p 1 a 1 ) ( 1 + p 2 + p 2 2 + ⋯ + p 2 a 2 ) ⋯ ( 1 + p k + p k 2 + ⋯ + p k a k )   , 提示:设\,n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}\,(k \ge 1\,,\,1 \le i \le k\,,\,a_i \ge 0\,)\,,则\,d(n)=(a_1+1)(a_2+1)\cdots(a_k+1)\,,\,\sigma(n)=(1+p_1+p_1^2+\cdots+p_1^{a_1})(1+p_2+p_2^2+\cdots+p_2^{a_2})\cdots(1+p_k+p_k^2+\cdots+p_k^{a_k})\,, n=p1a1p2a2pkak(k1,1ik,ai0),d(n)=(a1+1)(a2+1)(ak+1),σ(n)=(1+p1+p12++p1a1)(1+p2+p22++p2a2)(1+pk+pk2++pkak),

简化剩余系

定义

与正整数   m   \,m\, m互质的剩余类共有   φ ( m )   \,\varphi(m)\, φ(m)类,从每一类中取出一个数作为代表,所得到的   φ ( m )   \,\varphi(m)\, φ(m)个数,称为模   m   \,m\, m的一个简化剩余系。或者说,在模   m   \,m\, m的一个完全剩余系中,与   m   \,m\, m互质的数的全体称为模   m   \,m\, m的一个简化剩余系

性质

性质1:若   a 1 , a 2 , ⋯   , a φ ( m )   \,a_1,a_2,\cdots,a_{\varphi(m)}\, a1,a2,,aφ(m)   φ ( m )   \,\varphi(m)\, φ(m)个与   m   \,m\, m互质的整数,并且两两关于模   m   \,m\, m互不同余,则这些整数就构成了模   m   \,m\, m的简化剩余系。

性质2:若   ( a   , m ) = 1   \,(a\,,m)=1\, (a,m)=1   x   \,x\, x通过模   m   \,m\, m的简化剩余系,则   a x   \,ax\, ax也通过模   m   \,m\, m的简化剩余系。

提 示 : 若   ( a   , m ) = 1   ,   ( x   , m ) = 1   , 则   ( a x   , m ) = 1   。 若   x i ≢ x j  ⁣ ⁣ ( m o d m )   , 则   a x i ≢ a x j  ⁣ ⁣ ( m o d m )   提示:若\,(a\,,m)=1\,,\,(x\,,m)=1\,,则\,(ax\,,m)=1\,。若\,x_i \not \equiv x_j \!\! \pmod{m}\,,则\,ax_i \not \equiv ax_j \!\! \pmod{m}\, (a,m)=1,(x,m)=1,(ax,m)=1xixj(modm),axiaxj(modm)

性质3:设   m 1 , m 2   \,m_1,m_2\, m1,m2是互质的两个正整数。若   x 1 , x 2   \,x_1,x_2\, x1,x2分别通过模   m 1 , m 2   \,m_1,m_2\, m1,m2的简化剩余系,则   m 2 x 1 + m 1 x 2   \,m_2x_1+m_1x_2\, m2x1+m1x2通过模   m 1 m 2   \,m_1m_2\, m1m2的简化剩余系。

证 : 因 为   ( m 1   , m 2 ) = 1   , 所 以 当   x 1 , x 2   分 别 通 过 模   m 1 , m 2   的 简 化 剩 余 系 时 , 则   m 2 x 1 + m 1 x 2   通 过   φ ( m 1 ) φ ( m 2 ) = φ ( m 1 m 2 )   个 数 。 又 当   x 1 , x 2   分 别 通 过 模   m 1 , m 2   的 完 全 剩 余 系 时 ,   m 2 x 1 + m 1 x 2   通 过   m 1 m 2   的 完 全 剩 余 系 。 故 上 述   φ ( m 1 m 2 )   个 数 关 于 模   m 1 m 2   互 不 同 余 。 于 是 只 需 证 它 们 与   m 1 m 2   互 质 。 事 实 上 , 因 为   ( x 1   , m 1 ) = 1   , ( m 2   , m 1 ) = 1   , 即   ( m 2 x 1   , m 1 ) = 1   , 故   ( m 2 x 1 + m 1 x 2   , m 1 ) = 1   , 同 理 可 证   ( m 2 x 1 + m 1 x 2   , m 2 ) = 1   , 再 由   ( m 1   , m 2 ) = 1   , 得   ( m 2 x 1 + m 1 x 2   , m 1 m 2 ) = 1   , 因 此 命 题 成 立 。 证:因为\,(m_1\,,m_2)=1\,,所以当\,x_1,x_2\,分别通过模\,m_1,m_2\,的简化剩余系时,则\,m_2x_1+m_1x_2\,通过\,\varphi(m_1)\varphi(m_2)=\varphi(m_1m_2)\,个数。又当\,x_1,x_2\,分别通过模\,m_1,m_2\,的完全剩余系时,\,m_2x_1+m_1x_2\,通过\,m_1m_2\,的完全剩余系。故上述\,\varphi(m_1m_2)\,个数关于模\,m_1m_2\,互不同余。于是只需证它们与\,m_1m_2\,互质。事实上,因为\,(x_1\,,m_1)=1\,,(m_2\,,m_1)=1\,,即\,(m_2x_1\,,m_1)=1\,,故\,(m_2x_1+m_1x_2\,,m_1)=1\,,同理可证\,(m_2x_1+m_1x_2\,,m_2)=1\,,再由\,(m_1\,,m_2)=1\,,得\,(m_2x_1+m_1x_2\,,m_1m_2)=1\,,因此命题成立。 (m1,m2)=1,x1,x2m1,m2,m2x1+m1x2φ(m1)φ(m2)=φ(m1m2)x1,x2m1,m2,m2x1+m1x2m1m2φ(m1m2)m1m2m1m2,(x1,m1)=1,(m2,m1)=1,(m2x1,m1)=1,(m2x1+m1x2,m1)=1,(m2x1+m1x2,m2)=1,(m1,m2)=1,(m2x1+m1x2,m1m2)=1,

例题

  •   p   \,p\, p是一奇质数,且   2 m ≢ 1  ⁣ ⁣ ( m o d p )   \,2^m \not \equiv 1 \!\! \pmod{p}\, 2m1(modp),试证:   1 m + 2 m + ⋯ + ( p − 1 ) m ≡ 0  ⁣ ⁣ ( m o d p )   \,1^m+2^m+\cdots+(p-1)^m \equiv 0 \!\! \pmod{p}\, 1m+2m++(p1)m0(modp)
    证 : 因   1 , 2 , ⋯   , p − 1   是 模   p   的 一 个 简 化 剩 余 系 ,   ( 2   , p ) = 1   , 故 由 性 质   2   知 ,   2 , 4 , ⋯   , 2 ( p − 1 )   也 是 模   p   的 一 个 简 化 剩 余 系 , 于 是   1 m + 2 m + ⋯ + ( p − 1 ) m ≡ 2 m + 4 m + ⋯ + ( 2 ( p − 1 ) ) m  ⁣ ⁣ ( m o d p )   , 即   ∑ i = 1 p − 1 i m ≡ 2 m ∑ i = 1 p − 1 i m  ⁣ ⁣ ( m o d p )   , 又   2 m ≢ 1  ⁣ ⁣ ( m o d p )   , 故   ∑ i = 1 p − 1 i m ≡ 0  ⁣ ⁣ ( m o d p )   证:因\,1,2,\cdots,p-1\,是模\,p\,的一个简化剩余系,\,(2\,,p)=1\,,故由性质\,2\,知,\,2,4,\cdots,2(p-1)\,也是模\,p\,的一个简化剩余系,于是\,1^m+2^m+\cdots+(p-1)^m \equiv 2^m+4^m+\cdots+(2(p-1))^m \!\! \pmod{p}\,,即\,\begin{aligned}\sum_{i=1}^{p-1}i^m\end{aligned} \equiv \begin{aligned}2^m\sum_{i=1}^{p-1}i^m\end{aligned} \!\! \pmod{p}\,,又\,2^m \not \equiv 1 \!\! \pmod{p}\,,故\,\begin{aligned}\sum_{i=1}^{p-1}i^m\end{aligned} \equiv 0 \!\! \pmod{p}\, 1,2,,p1p,(2,p)=1,2,2,4,,2(p1)p,1m+2m++(p1)m2m+4m++(2(p1))m(modp),i=1p1im2mi=1p1im(modp),2m1(modp),i=1p1im0(modp)
  •   m > 1   \,m > 1\, m>1   ( a   , m ) = 1   \,(a\,,m)=1\, (a,m)=1,试证:若   y   \,y\, y通过模   m   \,m\, m的简化剩余系,则   ∑ y { a y m } = 1 2 φ ( m )   \,\begin{aligned}\sum_{y}\{\dfrac{ay}{m}\}=\dfrac{1}{2}\varphi(m)\end{aligned}\, y{may}=21φ(m),这里,   { y }   \,\{y\}\, {y}表示实数   y   \,y\, y的小数部分。
    证 : 由 性 质 2 知   a y   也 通 过 模   m   的 简 化 剩 余 系 , 记 为 { R 1 , R 2 , ⋯   , R φ ( m ) }   , 所 以 ∑ y { a y m } = { R 1 m } + { R 2 m } + ⋯ + { R φ ( m ) m } 对 模   m   , 由   R i = m q i + r i   ( i = 1 , 2 , ⋯   , φ ( m ) )   , 知 { R i m } = { m q i + r i m } = { r i m } 故 ∑ y { a y m } = { r 1 m } + { r 2 m } + ⋯ + { r φ ( m ) m }   , 这 里 ,   r 1 , r 2 , ⋯   , r φ ( m )   是 模   m   的 最 小 正 简 化 剩 余 系 。 注 意 到 , 在 模   m   的 最 小 正 简 化 剩 余 系 中 ,   r i   与   m − r i   是 成 对 出 现 的 。 事 实 上 , 若   ( r i   , m ) = 1   , 则 必 有   ( m − r i   , m ) = 1   , 则 模   m   的 最 小 正 简 化 剩 余 系 可 记 为   { r 1 , r 2 , ⋯   , r 1 2 φ ( m ) , ⋯   , m − r 2 , m − r 1 }   , 于 是 首 尾 相 加 再 除 以   m   , 即 知 命 题 成 立 。 证:由性质2知\,ay\,也通过模\,m\,的简化剩余系,记为\{R_1,R_2,\cdots,R_{\varphi(m)}\}\,,所以 \\ \begin{aligned}\sum_{y}\{\dfrac{ay}{m}\}=\{\dfrac{R_1}{m}\}+\{\dfrac{R_2}{m}\}+\cdots+\{\dfrac{R_{\varphi(m)}}{m}\}\end{aligned} \\对模\,m\,,由\,R_i=mq_i+r_i\,(i=1,2,\cdots,\varphi(m))\,,知\\ \{\dfrac{R_i}{m}\}=\{\dfrac{mq_i+r_i}{m}\}=\{\dfrac{r_i}{m}\} \\\\故 \qquad \begin{aligned}\sum_{y}\{\dfrac{ay}{m}\}=\{\dfrac{r_1}{m}\}+\{\dfrac{r_2}{m}\}+\cdots+\{\dfrac{r_{\varphi(m)}}{m}\}\end{aligned}\,,这里,\,r_1,r_2,\cdots,r_{\varphi(m)}\,是模\,m\,的最小正简化剩余系。\\ 注意到,在模\,m\,的最小正简化剩余系中,\,r_i\,与\,m-r_i\,是成对出现的。\\ 事实上,若\,(r_i\,,m)=1\,,则必有\,(m-r_i\,,m)=1\,,\\则模\,m\,的最小正简化剩余系可记为\,\{r_1,r_2,\cdots,r_{\frac{1}{2}\varphi(m)},\cdots,m-r_2,m-r_1\}\,,于是首尾相加再除以\,m\,,即知命题成立。 2aym,{R1,R2,,Rφ(m)},y{may}={mR1}+{mR2}++{mRφ(m)}m,Ri=mqi+ri(i=1,2,,φ(m)),{mRi}={mmqi+ri}={mri}y{may}={mr1}+{mr2}++{mrφ(m)},,r1,r2,,rφ(m)m,m,rimri,(ri,m)=1,(mri,m)=1,m{r1,r2,,r21φ(m),,mr2,mr1},m,
  •   m > 1   \,m > 1\, m>1   ( a   , m ) = 1   \,(a\,,m)=1\, (a,m)=1,试证:若   y   \,y\, y通过模   m   \,m\, m的简化剩余系,则   ∑ y [   a y m   ] = 1 2 φ ( m ) ( a − 1 )   \,\begin{aligned}\sum_{y}[\,\dfrac{ay}{m}\,]=\dfrac{1}{2}\varphi(m)(a-1)\end{aligned}\, y[may]=21φ(m)(a1)
    提 示 : 参 考 上 一 题 , 且   a y m = [   a y m   ] + { a y m }   提示:参考上一题,且\,\dfrac{ay}{m}=[\,\dfrac{ay}{m}\,]+\{\dfrac{ay}{m}\}\, ,may=[may]+{may}
  •   m 1 , m 2 , ⋯   , m k   \,m_1,m_2,\cdots,m_k\, m1,m2,,mk   k   \,k\, k个两两互质的正整数,   x 1 , x 2 , ⋯   , x k   \,x_1,x_2,\cdots,x_k\, x1,x2,,xk分别通过模   m 1 , m 2 , ⋯   , m k   \,m_1,m_2,\cdots,m_k\, m1,m2,,mk的简化剩余系,试证:   M 1 x 1 + M 2 x 2 + ⋯ + M k x k   \,M_1x_1+M_2x_2+\cdots+M_kx_k\, M1x1+M2x2++Mkxk通过模   m = m 1 m 2 ⋯ m k   \,m=m_1m_2\cdots m_k\, m=m1m2mk的简化剩余系,这里   m = m i M i   ( i = 1 , 2 , ⋯   , k ) \,m=m_iM_i\,(i=1,2,\cdots,k) m=miMi(i=1,2,,k)
    提 示 : 数 学 归 纳 法 以 及 性 质   3   的 证 明 思 想 提示:数学归纳法以及性质\,3\,的证明思想 3

End

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值