1.项目背景
随着智能手机的快速发展,消费者对智能手机的使用行为和习惯也日趋多样化。特别是在5G时代的到来和各类应用的丰富发展背景下,智能手机使用模式呈现出新的特点,本项目使用模拟生成的700位用户智能手机使用数据进行深入分析,探索不同用户群体的使用行为特征,了解影响用户行为分类的关键因素,这不仅有助于理解用户的使用习惯,还可以为手机制造商优化产品设计、运营商制定更智能的流量套餐方案提供数据支持。同时,通过建立预测模型,可以更好地预判用户的行为类别和数据流量需求,为提供个性化服务奠定基础。需要说明的是,本项目使用的是模拟数据集,主要用于数据分析方法的实践和演示,分析结果仅供参考。
2.数据说明
字段 | 说明 |
---|---|
User ID | 每个用户的唯一标识符 |
Device Model | 用户智能手机的型号 |
Operating System | 设备的操作系统(iOS 或 Android) |
App Usage Time (min/day) | 每天在移动应用上花费的时间(单位:分钟) |
Screen On Time (hours/day) | 屏幕每天平均活跃时间(单位:小时) |
Battery Drain (mAh/day) | 每日电池消耗量(单位:毫安时) |
Number of Apps Installed | 设备上安装的应用程序总数 |
Data Usage (MB/day) | 每日移动数据消耗量(单位:兆字节) |
Age | 用户年龄 |
Gender | 用户性别(男或女) |
User Behavior Class | 基于使用模式对用户行为进行分类(1 至 5) |
3.Python库导入及数据读取
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import chi2_contingency,spearmanr,kruskal
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import classification_report,mean_squared_error, r2_score,mean_absolute_error
data = pd.read_csv("/home/mw/input/10241726/user_behavior_dataset.csv")