课题来源
随着信息技术的快速发展,知识图谱成为整合和组织大规模知识的有效手段。在教育领域,校史作为学校文化的重要组成部分,对于了解学校的发展历程、人物关系以及荣誉成就具有重要意义。
本研究旨在利用机器学习技术对校史知识相关问句进行解析,并从知识图谱中找到问题的答案。通过构建中原工学院的校史知识图谱,我们可以系统整理和记录学校的历史资料,包括学校的起源、重要事件、领导层人物、院系设置、荣誉成就等。这将丰富学校的历史资源,方便师生、校友和研究者获取相关信息,促进校史教育和研究的深入开展。
通过机器学习技术解析问句并在知识图谱中查找答案,该研究将提供一种快捷高效的方式来获取学校相关信息,节省了传统检索方法下的人力物力成本。同时,该研究成果对于推动智能教育的发展也具有积极意义。它为智能教育领域提供了一个范例,探索如何将机器学习技术应用于校史教育和知识传播,提升科研效率
研究内容
功能需求
需求分析
本文介绍的校史知识图谱检索系统旨在为构建校史知识体系提供支持。该系统主要包含了实体识别、知识查询、校史知识概览功能。在系统设计过程中,充分考虑了以下需求分析。
1)实体识别功能,通过预训练BERT+LSTM模型,能够精准地识别与校史相关的实体。
2)实体查询、关系查询实体与实体之间的关系。
3)自动问答
4)开发交互页面,采用前端技术Html、CSS和JQuery,python框架等,将查询结果以知识图谱的形式直观地呈现给用户,提高用户查询效率和便捷性。
系统架构
本节所述为校史知识图谱检索系统的架构。该系统由3个模块组成,分别是数据层、业务层和用户交互层。数据层是整个系统的基础,也是关键之一,负责管理校史知识图谱数据的持久化,同时提供对数据进行操作的接口,为后续服务提供所需数据。业务层则是整个平台的核心,负责实现知识查询、知识问答、知识可视化等一系列功能。用户交互层则负责用户与系统之间的交互,包括用户输入、界面展示等。该层为用户提供了方便的操作界面,使用户可以方便地了解和掌握校史的知识。校史知识图谱检索系统框架如图所示。
功能模块
这一部分的主要内容是介绍校史知识图谱检索系统的功能设计和实现。该系统建立在校史知识图谱的基础上,具备实体识别、知识查询等多个功能,能够帮助用户快速准确地获取相关知识。
- 实体识别
该部分描述了校史知识图谱检索系统的实体识别功能。系统可以根据用户输入的文本进行实体及属性的抽取,并在启动时加载与指称识别有关的模型文件。当用户发送POST请求给后台时,后台会使用指称识别模型对相关内容进行识别,获取实体信息,并将结果通过浏览器返回给用户。
(指称识别模型可以通过分析文本中的代词、名词、动词等语言特征,识别出文本中的指称或者引用,并将其与已有的实体信息进行匹配和关联。指称识别模型可以根据上下文信息、语义关系、词汇语境等多种因素来确定指称或者引用的所指对象,从而提高实体识别的准确性和可靠性。)
- 知识查询
知识查询提供了2种查询方式:实体查询和关系查询。
用户需要在文本框中输入想要查询的内容,之后系统会通过发送HTTP请求将输入内容传输到flask后端。Flask框架中的路由将接收到请求。该请求将被传递给相应的视图函数,视图函数则负责处理该请求。
在视图函数中,可以使用Flask提供的request对象来访问用户提交的问题内容。这些数据可以包含要查询的实体或关系的相关信息。
接下来,视图函数将使用所需的查询逻辑来与图数据库进行交互。需要使用相应的图数据库库(如py2neo)来建立连接,并执行相应的查询操作。
一旦查询操作完成,视图函数将从图数据库中获取到的结果进行处理。将结果会被封装为JSON格式,以便于在前端进行处理和展示。
最后,视图函数将使用Flask提供的jsonify函数将查询结果作为响应返回给前端。前端页面可以使用JavaScript或其他前端技术来解析和展示这些JSON数据,并将结果呈现给用户。
参考文献
[1]郭振文.基于知识图谱的人工智能领域知识问答系统[D].大连理工大学,2022.
[2]郭金.基于知识图谱的智慧医疗问答系统的设计与实现[D].西安电子科技大学,2020.
[3]Green Jr B F, Wolf A K, Chomsky C, et al. Baseball: an automatic question-answerer[C].
Papers presented at the May 9-11, 1961, western joint IRE-AIEE-ACM computer
conference. ACM, 1961: 219-224.
[4]张崇宇.基于知识图谱的自动问答系统的应用研究与实现[D].北京邮电大学,2019.