9.20残差网络 ResNet

  • 现在经常使用的网络之一

问题:随着神经网络的不断加深,一定会带来好处吗?

  • 不一定。

  • 蓝色五角星表示最优值
  • 标有Fi的闭合区域表示函数,闭合区域的面积代表函数的复杂程度,在这个区域中能够找到一个最优的模型(可以用区域中的一个点来表示,该点到最优值的距离可以用来衡量模型的好坏)
  • 从上图中可以看出,随着函数的复杂度的不断增加,虽然函数的区域面积增大了,但是在该区域中所能找到的最优模型(该区域内的某一点)离最优值的距离可能会越来越远(也就是模型所在的区域随着函数复杂度的增加,逐渐偏离了原来的区域,离最优值越来越远)(非嵌套函数(non-nested function
  • 解决上述问题(模型走偏)的方法:每一次增加函数复杂度之后函数所覆盖的区域会包含原来函数所在的区域(嵌套函数(nested function)),只有当较复杂的函数类包含复杂度较小的函数类时,才能确保提高它的性能,如下图所示

  • 也就是说,增加函数的复杂度只会使函数所覆盖的区域在原有的基础上进行扩充,而不会偏离原本存在的区域
  • 对于深度神经网络,如果能将新添加的层训练成恒等映射(identify function)f(x) = x,新模型和原模型将同样有效;同时,由于新模型可能得出更优的解来拟合训练数据集,因此添加层似乎更容易降低训练误差

核心思想

残差网络的核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一

由此,残差块(residual blocks)诞生了

残差块

  • 之前增加模型深度的方法都是层层堆叠的方法,ResNet的思想是在堆叠层数的同时不会增加模型的复杂度
  • 上图中左侧表示一个正常块,右侧表示一个残差块
  • x:原始输入
  • f(x):理想映射(也是激活函数的输入)
  • 对于正常块中来说,虚线框中的部分需要直接拟合出理想映射 f(x);而对于残差块来说,同样的虚线框中的部分需要拟合出残差映射 f(x) - x
  • 残差映射在现实中往往更容易优化
  • 如果以恒等映射 f(x) = x 作为所想要学出的理想映射 f(x),则只需要将残差块中虚线框内加权运算的权重偏置参数设置为 0,f(x) 就变成恒等映射了
  • 在实际中,当理想映射 f(x) 极接近于恒等映射时,残差映射易于捕捉恒等映射的细微波动
  • 在残差块中,输入可以通过跨层数据线路更快地向前传播

  • 左边是ResNet的第一种实现(不包含1 * 1卷积层的残差块),它直接将输入加在了叠加层的输出上面
  • 右边是ResNet的第二种实现(包含1 * 1卷积层的残差块),它先对输入进行了1 * 1的卷积变换通道(改变范围),再加入到叠加层的输出上面
  • ResNet沿用了VGG完整的3 * 3卷积层设计
  • 残差块中首先有2个相同输出通道数的3 * 3卷积层,每个卷积层后面接一个批量归一化层和ReLu激活函数;通过跨层数据通路,跳过残差块中的两个卷积运算,将输入直接加在最后的ReLu激活函数前(这种设计要求2个卷积层的输出与输入形状一样,这样才能使第二个卷积层的输出(也就是第二个激活函数的输入)和原始的输入形状相同,才能进行相加)
  • 如果想要改变通道数,就需要引入一个额外的1 * 1的卷积层来将输入变换成需要的形状后再做相加运算(如上图中右侧含1 * 1卷积层的残差块)

不同的残差块

ResNet架构

原本的ResNet和VGG类似,ResNet块有两种:

  • 第一种是高宽减半的ResNet块。第一个卷积层的步幅等于2,使得高宽减半,通道数翻倍(如上图下半部分所示)
  • 第二种是高宽不减半的RexNet块,如上图上半部分所示,重复多次,所有卷积层的步幅等于1

通过ResNet块数量通道数量的不同,可以得到不同的ResNet架构,ResNet-18架构如下图所示

  • ResNet架构类似于VGG和GoogLeNet的总体架构,但是替换成了ResNet块(ResNet块的每个卷积层后增加了批量归一化层)
  • ResNet的前两层和GoogLeNet中的一样,也分成了5个stage:在输出通道数为64、步幅为2的7 * 7卷积层后,接步幅为2的3 * 3的最大汇聚层
  • GoogLeNet在后面接了4由Inception块组成的模块;ResNet使用了4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块,第一个模块的通道数同输入通道数一致;由于之前已经使用了步幅为2的最大汇聚层,所以无需减小高和宽;之后每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半
  • 通过配置不同的通道数和模块中的残差块数可以得到不同的ResNet模型:ResNet-18:每个模块都有4个卷积层(不包含恒等映射的1 * 1卷积层),再加上第一个7 * 7卷积层和最后一个全连接层,一共有18层;还有更深的152层的ResNet-152

ResNet 152

  • 图中所示的是ResNet-152(经过两三次改良之后的版本)在ImageNet数据集上分类任务的精度
  • 模型的层数越少通常速度越快,精度越低,层数越多,精度越低
  • ResNet 152是一个经常用来刷分的模型,在实际中使用的比较少

总结

  • 残差块使得很深的网络更加容易训练(不管网络有多深,因为有跨层数据通路连接的存在,使得始终能够包含小的网络,因为跳转连接的存在,所以会先将下层的小型网络训练好再去训练更深层次的网络),甚至可以训练一千层的网络(只要内存足够,优化算法就能够实现)
  • 学习嵌套函数是神经网络的理想情况,在深层神经网络中,学习另一层作为恒等映射比较容易
  • 残差映射可以更容易地学习同一函数,例如将权重层中的参数近似为零
  • 利用残差块可以训练出一个有效的深层神经网络:输入可以通过层间的残余连接更快地向前传播
  • 残差网络对随后的深层神经网络的设计产生了深远影响,无论是卷积类网络还是全连接类网络,几乎现在所有的网络都会用到,因为只有这样才能够让网络搭建的更深

代码:

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

class Residual (nn.Module):
    def __init__(self, input_channels, num_channels, use_1x1conv=False,strides=1): # num_channels为输出channel数  
        super().__init__()
        self.conv1 = nn.Conv2d(
            input_channels, num_channels, kernel_size=3,
            padding=1, stride=strides) # 可以使用传入进来的strides 
        self.conv2 = nn.Conv2d(
            num_channels, num_channels, kernel_size=3, 
            padding=1)   # 使用nn.Conv2d默认的strides=1
        if use_1x1conv:
            self.conv3 = nn.Conv2d(
                input_channels, num_channels, kernel_size=1, stride=strides)   
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)
        self.relu = nn.ReLU(inplace=True) # inplace原地操作,不创建新变量,对原变量操作,节约内存
        
    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)

# 输入和输出形状一致
blk = Residual(3,3) # 输入三通道,输出三通道
X = torch.rand(4,3,6,6) 
Y = blk(X) # stride用的默认的1,所以宽高没有变化。如果strides用2,则宽高减半
Y.shape

# 增加输出通道数的同时,减半输出的高和宽
blk = Residual(3,6,use_1x1conv=True,strides=2)  # 由3变为6,通道数加倍
blk(X).shape

# ResNet的第一个stage
b1 = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
                  nn.BatchNorm2d(64),nn.ReLU(),
                  nn.MaxPool2d(kernel_size=3,stride=2,padding=1))

# class Residual为小block,resnet_block 为大block,为Resnet网络的一个stage
def resnet_block(input_channels,num_channels,num_residuals,first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block: # stage中不是第一个block则高宽减半
            blk.append(Residual(input_channels, num_channels, use_1x1conv=True,strides=2))   
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk

b2 = nn.Sequential(*resnet_block(64,64,2,first_block=True)) # 因为b1做了两次宽高减半,nn.Conv2d、nn.MaxPool2d,所以b2中的首次就不减半了      
b3 = nn.Sequential(*resnet_block(64,128,2)) # b3、b4、b5的首次卷积层都减半
b4 = nn.Sequential(*resnet_block(128,256,2))
b5 = nn.Sequential(*resnet_block(256,512,2))

net = nn.Sequential(b1,b2,b3,b4,b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(),nn.Linear(512,10))    

# 观察一下ReNet中不同模块的输入形状是如何变化的
X = torch.rand(size=(1,1,224,224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t',X.shape) # 通道数翻倍、模型减半

# 训练模型
lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)  
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

 

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: IAR for ARM是一款用于开发基于ARM处理器的嵌入式系统的集成开发环境。9.20是该软件的版本号。该软件提供了丰富的开发工具,包括编译器、调试器、性能分析器、代码优化器等,用于方便地开发ARM芯片的软件系统。 IAR for ARM的编译器支持ICC、EC++和Asm三种编程语言,能够生成高效、可靠、可移植的代码。它还提供了一系列调试工具,如 J-Link调试器和I-jet调试器,可以帮助开发人员快速调试和测试程序。 此外,IAR for ARM 9.20还提供了多种优化策略,包括大小优化、速度优化、调试优化等,可根据实际需求进行选择,从而使软件系统更加高效和可靠。此外,该软件还支持多种ARM处理器和外围器件,可适用于广泛的嵌入式系统开发。 总之,IAR for ARM 9.20是一款功能强大的嵌入式系统开发工具,可以大大提高开发效率和代码质量,方便开发人员进行ARM芯片的软件开发。 ### 回答2: IAR for ARM是一款可以支持现在市场上绝大多数ARM微处理器的专业编译软件,其最新版本是9.20版。它具有强大的编译能力和高度优化的代码生成功能,可以使ARM微处理器的性能得到最大的发挥。 IAR for ARM 9.20版相比较以往版本,具有更加快速、更稳定和更精确的代码调试功能,同时支持多核调试。另外,该版本还提供了丰富的代码库以及系统级的软件组件,方便用户更快速地开发ARM平台的应用程序。 除此之外,IAR for ARM 9.20还可以集成其他常用的开发工具,比如GIT、SVN等,使得团队协作更加便捷,同时也提高了软件开发的效率和可靠性。总之,IAR for ARM 9.20是一个适用于ARM平台开发的全面且强大的编译工具。 ### 回答3: IAR for ARM 9.20是一款面向ARM处理器的编译器。它支持从ARM7到Cortex-M架构,提供了一系列完整的开发工具链,包括C/C++编译器、链接器、调试器等。其性能强大,对代码进行了高度优化,能够让开发者在ARM处理器上开发高效的嵌入式应用程序。它可以在多种操作系统上运行,例如Windows、Linux和MacOS等。此外,IAR for ARM 9.20还具有高度集成的调试器功能,支持实时观察变量的值,跟踪程序的执行路径,并且能够快速定位错误。同时,该编译器还提供了丰富的编译器选项和优化技术,可以灵活地为不同的应用程序和目标处理器进行优化。总之,IAR for ARM 9.20是一款可靠的ARM处理器编译器,能够为嵌入式开发者提供高效的开发工具和丰富的优化选项。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值