公平席位分配问题的数学模型

某校学生会举办大型活动,计划从A,B,C三系选举10名学生代表作为评委参与评分,已知三系共有1000名学生,其中A系237名,B系331名,C系432名,试分配各系的评委数。

思路:1.先按人数比例的整数部分分配

2.剩余席位用Q值方法分配

解:设A,B,C系的学生数分别为P1=237,P2=331,P3=432.所分得的评委数为对应的ni

①按人数比例的整数部分分配

A系:P1=237 ----  n1=2

B系:P2=331 ----  n2=3

C系:P3=432 ----  n3=4

显然已经将9个评委数分配完毕,剩下的1个评委数将利用Q值方法分配

②Q值法(增加这一个评委数给Q值较大一方,这种分配方法称为Q值法)

A系:Q1=237²/(2*(2+1))=9361.5   

B系:Q2=9130.08   

C系:Q3=9331.2

Q1>Q2>Q3

所以第10个评委数应分给A系,所以现在  A系,B系,C系的评委数各占3,3,4

                                                                          

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值