Densenet自学笔记

本文详细介绍了Densenet与Resnet的区别,深入解析Densenet的网络结构,包括DenseBlock、Bottleneck层和Transition层的工作原理。Densenet通过concat操作增强了信息传递,减少了梯度消失问题,同时在参数数量和特征利用方面具有优势,但在显存需求上较高。
摘要由CSDN通过智能技术生成

Densenet与Resnet相比

两者都是通过建立前面层与后面层之间的联系来提高网络的性能。Resnet(下图1)是使用add,而Densenet(下图2)是采用concat。

 

网络结构

Densenet是通过堆叠DenseBlock模块和Transition结构。

DenseBlock

在DenseBlock中,各个层的特征图大小一致,可以在channel维度上进行拼接。DenseBlock中的非线性组合函数采用的是BN + Relu + 3*3卷积的结构。

后续每层的输入不只包含上一层的输入还包含之前所有层的输入,这样的就大大提高了信息的利用率,同事有效的减少了过拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值