动态规划:不同路径

1. 不同路径

LeetCode第62题是关于“不同路径”的问题,其描述如下:

问题描述:
一个机器人位于一个 m x n 网格的左上角(起始点在下图中标记为“Start”)。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。问总共有多少条不同的路径?

例如,一个 7 x 3 的网格有多少可能的路径?

动态规划解法思路:

  1. 定义状态:
    dp[i][j] 表示从起点到达点 (i, j) 的路径总数。

  2. 状态转移方程:
    dp[i][j] = dp[i-1][j] + dp[i][j-1],表示机器人可以从上方或左方移动到 (i, j)。

  3. 初始化条件:

    • 对于网格的第一行 dp[0][j] 和第一列 dp[i][0],只有一种方法到达,即一直向右或一直向下,所以这些值应初始化为 1。
  4. 填表计算:

    • dp[0][0] 开始填充,直到 dp[m-1][n-1]
  5. 输出结果:

    • 输出 dp[m-1][n-1],即为从左上角到右下角的不同路径数量。

以下是相应的Java实现代码:

public class Solution {
    public int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        
        // 初始化第一行和第一列
        for (int i = 0; i < m; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n; j++) {
            dp[0][j] = 1;
        }
        
        // 填充dp表
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        
        // 返回结果
        return dp[m-1][n-1];
    }
}

这段代码实现了前面描述的动态规划方法,通过两重循环来计算每个格点的路径数,最终结果存储在 dp[m-1][n-1] 中。这种方法的时间复杂度和空间复杂度均为 O(m * n),其中 m 和 n 是网格的行数和列数。如果要优化空间复杂度,可以进一步只使用一个一维数组来实现。

2. 不同路径2

LeetCode第63题是“不同路径 II”的问题,这是对第62题的一个扩展,现在网格中包含了一些障碍物,这些障碍物标记为 1,空位置标记为 0。问题描述如下:

问题描述:
一个机器人位于一个 m x n 网格的左上角(起始点在下图中标记为“Start”),网格中的障碍和空位置分别用 1 和 0 来表示。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。问总共有多少条不同的路径?

动态规划解法思路:

  1. 定义状态:
    dp[i][j] 表示从起点到达点 (i, j) 的路径总数。

  2. 状态转移方程:
    dp[i][j] = dp[i-1][j] + dp[i][j-1],但如果 (i, j) 是一个障碍,那么 dp[i][j] = 0,因为不可能通过障碍。

  3. 初始化条件:

    • 如果起点 (0,0) 是障碍,则 dp[0][0] = 0,否则 dp[0][0] = 1
    • 对于第一行或第一列,只要一旦遇到障碍,则该位置及其后的位置都不可达,即初始化为0。
  4. 填表计算:

    • 遍历每一个格点,按照状态转移方程计算。
  5. 输出结果:

    • 输出 dp[m-1][n-1],即为从左上角到右下角的不同路径数量。

以下是相应的Java实现代码:

public class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length, n = obstacleGrid[0].length;
        if (obstacleGrid[0][0] == 1) return 0;  // 如果起点就是障碍物,直接返回0

        int[][] dp = new int[m][n];
        dp[0][0] = 1;  // 起始点

        // 初始化第一列
        for (int i = 1; i < m; i++) {
            if (obstacleGrid[i][0] == 0 && dp[i-1][0] == 1) {
                dp[i][0] = 1;
            } else {
                dp[i][0] = 0;
            }
        }
        
        // 初始化第一行
        for (int j = 1; j < n; j++) {
            if (obstacleGrid[0][j] == 0 && dp[0][j-1] == 1) {
                dp[0][j] = 1;
            } else {
                dp[0][j] = 0;
            }
        }

        // 填充dp表
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 0) {
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                } else {
                    dp[i][j] = 0;
                }
            }
        }

        // 返回结果
        return dp[m-1][n-1];
    }
}

在这个解法中,我们考虑了障碍物的存在,因此需要在初始化和状态转移过程中判断当前格点是否为障碍。如果是障碍,则该点的路径数为0;否则,根据动态规划的逻辑计算路径数。这种方法的时间复杂度和空间复杂度仍为 O(m * n)。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值