目录
线性代数的基本概念是向量空间。我们最感兴趣的向量空间是所有n元复数组成的向量空间,而向量空间的元素称为向量,常用列矩阵记号表示
一些线性代数概念在量子力学中标准记号的总结
线性算子
严格的数学定义就不说了,只是谈谈个人理解,线性算子最容易的理解就是把它当成矩阵,与矩阵等价,其中有两个重要的算子,恒等算子,即对任意向量|V>,有
和零算子
对矩阵A是线性算子通常意味着
泡利矩阵在量子门电路中已有介绍,内积概念如Dirac记号,正交定义为矩阵内积为零,定义向量
的范数为
若向量满足
则为单位向量,且是正规的。
有一种表示线性算子有用的方式,充分利用了内积,称为外积。定义为一个线性算子,作用
我们用它表示作用于
上的结果,也可以解释为
被一个复数
相乘。
几个重要的性质
酉性,即对于线性算子U,有
厄米性,即对于唯一线性算子,有
,则称其为A的伴随或者厄米共轭
正规性,对算子U,有
由此我们可以得到一些有趣的结论,当然你可以试着去证明它,我们不妨将它当成定理
定理1 对任意投影算子P,都有
定理2 正规矩阵是厄米的当且仅当它的特征值为实数
定理3 酉算子具有内积不变性算子U满足,,则
内积
和
内积|
相等
定理4 所有酉矩阵的特征值的模都为1,也就是说,它可以写成的形式
定理5(谱分解——非常重要的定理)对于厄米算符可以表示为其本征值和本征态的和
对于
其中是算符
的本征值,
是量子态投影到
的子空间,等式为正规算子A的一个谱分解。
张量积,即将二维向量引入更高维度,数学过程略过只记结论。
定理6 两个酉算子的张量积是酉的,两个厄米算子的张量积是厄米的,两个正算子的张量积是半正定的,两个投影算子的张量积是投影算子
定理7 迹都是循环的
对易式[A,B]=AB-BA,和反对易式{A,B}=AB+BA,对易关系,[X,Y]=2iZ;[Y,Z]=2iX;[Z,X]=2iY;
极式分解与奇异值分解
极式分解(Polar Decomposition)是将一个复数矩阵或实数矩阵 AAA 分解为两个矩阵的乘积:一个酉矩阵(或正交矩阵)和一个正定矩阵。即,对于一个任意的矩阵 AAA,可以表示为:
其中,U 是一个酉矩阵(对于实矩阵是正交矩阵),即 (
是U共轭转置)
P 是一个半正定的对称矩阵,满足
奇异值分解(Singular Value Decomposition, SVD),设A是一个方阵。那么存在酉矩阵U和V,以及非负对角阵D,使得 A=UDV,D的对角线元素称为A的奇异值。
量子力学的五大基本公设
整个量子力学的数学理论可以建立于五个基础公设(postulate)。这些公设不能被严格推导出来,而是从实验结果仔细分析归纳总结而得到的。从这五个公设,可以推导出整个量子力学。假若量子力学的理论结果不符合实验结果,则必须将这些基础公设加以修改,直到没有任何不符合之处。至今为止,量子力学已被实验核对至极高准确度,还没有找到任何与理论不符合的实验结果,虽然有些理论很难直觉地用经典物理的概念来理解,例如波粒二象性和量子纠缠等等。
1.量子态公设:量子系统在任意时刻的状态(量子态)可以由希尔伯特空间
的态矢量
来设定,这意味着量子系统遵循叠加态原理,假若
,
属于希尔伯特空间
,那么
也属于希尔伯特空间
2.时间演化公设:态矢量为
的量子系统,其动力学演化可以用薛定谔方程表示
,方程右边为哈密顿量与态矢量的列向量相乘,左边为态矢量对时间的一阶偏导
3.可观察量公设:每个可观察量A都有其对应的厄米算符
,而算符A的所有本征矢量共同组成一个完备基地
4.坍塌公设,对量子系统A进行测量,这动作可以数学表示为将其对应的厄米算符A
作用于量子系统的态矢量 |ψ〉,测量值只能为A的本征值,即量子系统的量子态
立刻会塌缩到对应于本征值的本征态
线性算子和密度算子
不同于线性算子,只能表示系统的变换,只能表示物理的观测量,密度算子可以表示系统的状态。
线性算子(Linear Operator)是一个作用在希尔伯特空间上的线性映射,它将一个量子态映射到另一个量子态。线性算子用于表示物理量,例如位置算子、动量算子、哈密顿算子等。在测量某物理量时,我们通过作用线性算子来得到系统的本征态和本征值。
一个典型的例子是哈密顿算子 ,它描述系统的能量,通过求解
,我们得到系统的能量本征值 E 和对应的能量本征态
。
性质:
线性算子可以是厄米算子(Hermitian operator),即满足 ,这种算子对应可观测量的测量。
可以通过谱分解将线性算子分解为本征态和本征值的和。
密度算子(Density Operator),也称为密度矩阵,是用来描述量子系统的混合态的工具。与态矢量 ∣ψ〉只描述纯态不同,密度算子可以同时描述纯态和混合态
其中, 是概率分布,满足
, 且而
,而
是量子态。
作用:
密度算子用于描述系统处于混合态时的统计性质。在纯态中,量子态可以由态矢量 表示,而混合态是不同纯态的概率组合,密度算子能够对这种混合态进行准确表述。
在纯态情况下,密度算子,而在混合态中,它表示为多重量子态的加权平均。
性质:
正定性:密度算子 是一个正定算符,意味着对任意量子态
,有
迹为1:密度算子的迹满足 ,这对应量子系统的总概率为1。
纯态与混合态:对于纯态 ,密度算子是
,且,即密度算子是幂等的
对于混合态,密度算子满足
。
参考文献
1.深度科普|从线性代数到量子力学(1):量子力学的打开方式 (上) - 知乎 (zhihu.com)
2.(美)Michael ANielsen(迈克尔A.尼尔森),Isaac L.Chuang(艾萨克 L.庄). 量子计算与量子信息 10周年版[M]. 北京:电子工业出版社, 2022.02.