线性代数运用在量子力学中的总结

目录

线性算子

几个重要的性质

极式分解与奇异值分解

量子力学的五大基本公设

线性算子和密度算子

参考文献


        线性代数的基本概念是向量空间。我们最感兴趣的向量空间是所有n元复数组成的向量空间C^{n},而向量空间的元素称为向量,常用列矩阵记号表示

                                                                   \begin{pmatrix} z_{1}\\\vdots\\z_{n} \end{pmatrix}

一些线性代数概念在量子力学中标准记号的总结

线性算子

严格的数学定义就不说了,只是谈谈个人理解,线性算子最容易的理解就是把它当成矩阵,与矩阵等价,其中有两个重要的算子,恒等算子,即对任意向量|V>,有

                                                                I_{v}|v\rangle=|v\rangle

和零算子

                                                                0|v\rangle=|v\rangle

对矩阵A是线性算子通常意味着

                                                  A(\sum a_{i} |v\rangle)=(\sum a_{i} A|v\rangle)

泡利矩阵在量子门电路中已有介绍,内积概念如Dirac记号,正交定义为矩阵内积为零,定义向量

|v\rangle的范数为

                                                            |||v\rangle||=\sqrt{\langle v|v\rangle}

若向量|v\rangle满足

                                                                 |||v\rangle||=1

则为单位向量,且|v\rangle是正规的。

有一种表示线性算子有用的方式,充分利用了内积,称为外积。定义|w\rangle \langle v|为一个线性算子,作用

                                                  (|w\rangle \langle v|)(|v^{'}\rangle)=\langle v|v^{'}\rangle(|w\rangle )=(|w\rangle )\langle v|v^{'}\rangle

我们用它表示|w\rangle \langle v|作用于|v^{'}\rangle上的结果,也可以解释为|w\rangle被一个复数\langle v|v^{'}\rangle相乘。

几个重要的性质

酉性,即对于线性算子U,有UU^{+}=U^{+}U=I

厄米性,即对于唯一线性算子A^{+},有( |v\rangle,A|w\rangle)= (A^{+} |v\rangle,|w\rangle),则称其为A的伴随或者厄米共轭

正规性,对算子U,有UU^{+}=U^{+}U=I

由此我们可以得到一些有趣的结论,当然你可以试着去证明它,我们不妨将它当成定理

定理1  对任意投影算子P,都有P^{2}=P

定理2  正规矩阵是厄米的当且仅当它的特征值为实数

定理3  酉算子具有内积不变性算子U满足,UU^{+}=U^{+}U=I,则U|v\rangle内积U|w\rangle|v\rangle内积||w\rangle相等

定理4  所有酉矩阵的特征值的模都为1,也就是说,它可以写成e^{i\Theta }的形式

定理5(谱分解——非常重要的定理)对于厄米算符\widetilde{A}可以表示为其本征值和本征态的和

对于

                                                          \widetilde{A}=\sum a_{i}|a_{i}\rangle\langle a_{i}|

其中a_{i}是算符\widetilde{A}的本征值,|a_{i}\rangle\langle a_{i}|是量子态投影到a_{i}的子空间,等式为正规算子A的一个谱分解。

张量积,即将二维向量引入更高维度,数学过程略过只记结论。

定理6  两个酉算子的张量积是酉的,两个厄米算子的张量积是厄米的,两个正算子的张量积是半正定的,两个投影算子的张量积是投影算子

定理7  迹都是循环的

                                                          tr(AB)=tr(BA)

                                               tr(A+B)=tr(A)+tr(B)

                                         tr(U^{+}AU)=tr(U^{+}UA)=tr(A)

对易式[A,B]=AB-BA,和反对易式{A,B}=AB+BA,对易关系,[X,Y]=2iZ;[Y,Z]=2iX;[Z,X]=2iY;

极式分解与奇异值分解

       极式分解(Polar Decomposition)是将一个复数矩阵或实数矩阵 AAA 分解为两个矩阵的乘积:一个酉矩阵(或正交矩阵)和一个正定矩阵。即,对于一个任意的矩阵 AAA,可以表示为:

                                                               A=UP

其中,U 是一个酉矩阵(对于实矩阵是正交矩阵),即 U^{+}U=I(U^{+}是U共轭转置)

P 是一个半正定的对称矩阵,满足 P=P^{+}\geq 0

       

        奇异值分解(Singular Value Decomposition, SVD),设A是一个方阵。那么存在酉矩阵U和V,以及非负对角阵D,使得 A=UDV,D的对角线元素称为A的奇异值。

量子力学的五大基本公设

        整个量子力学的数学理论可以建立于五个基础公设(postulate)。这些公设不能被严格推导出来,而是从实验结果仔细分析归纳总结而得到的。从这五个公设,可以推导出整个量子力学。假若量子力学的理论结果不符合实验结果,则必须将这些基础公设加以修改,直到没有任何不符合之处。至今为止,量子力学已被实验核对至极高准确度,还没有找到任何与理论不符合的实验结果,虽然有些理论很难直觉地用经典物理的概念来理解,例如波粒二象性和量子纠缠等等。

1.量子态公设:量子系统在任意时刻的状态(量子态)可以由希尔伯特空间\mathcal{H}的态矢量|\Psi \rangle来设定,这意味着量子系统遵循叠加态原理,假若|\Psi _{1}\rangle|\Psi _{2}\rangle属于希尔伯特空间\mathcal{H},那么c_{1}|\Psi _{1}\rangle+c_{2}|\Psi _{2}\rangle也属于希尔伯特空间\mathcal{H}

2.时间演化公设:态矢量为|\Psi (t)\rangle的量子系统,其动力学演化可以用薛定谔方程表示i\hbar\frac{\partial }{\partial t}|\Psi (t)\rangle=\hat{H}|\Psi (t)\rangle,方程右边为哈密顿量与态矢量的列向量相乘,左边为态矢量对时间的一阶偏导

3.可观察量公设:每个可观察量A都有其对应的厄米算符\widetilde{A},而算符A的所有本征矢量共同组成一个完备基地

4.坍塌公设,对量子系统A进行测量,这动作可以数学表示为将其对应的厄米算符A

 作用于量子系统的态矢量 |ψ〉,测量值只能为A的本征值,即量子系统的量子态|a_{i}\rangle立刻会塌缩到对应于本征值的本征态|e_{i}\rangle

线性算子和密度算子

       不同于线性算子,只能表示系统的变换,只能表示物理的观测量,密度算子可以表示系统的状态。

       线性算子(Linear Operator)是一个作用在希尔伯特空间上的线性映射,它将一个量子态映射到另一个量子态。线性算子用于表示物理量,例如位置算子、动量算子、哈密顿算子等。在测量某物理量时,我们通过作用线性算子来得到系统的本征态和本征值。

      一个典型的例子是哈密顿算子 \hat{H},它描述系统的能量,通过求解\hat{H}|\Psi \rangle=E|\Psi \rangle ,我们得到系统的能量本征值 E 和对应的能量本征态 |\Psi \rangle

性质:

     线性算子可以是厄米算子(Hermitian operator),即满足U^{+}=U ,这种算子对应可观测量的测量。

     可以通过谱分解将线性算子分解为本征态和本征值的和。

      密度算子(Density Operator),也称为密度矩阵,是用来描述量子系统的混合态的工具。与态矢量 ∣ψ〉只描述纯态不同,密度算子可以同时描述纯态和混合态

                                                              \widetilde{\rho }=\sum_{}^{}p_{i}|\Psi _{i}\rangle\langle\Psi _{i}|

其中,p_{i } 是概率分布,满足 0\leq p_{i }\leq 1, 且而\sum_{i}^{}p_{i}=1,而|\Psi \rangle是量子态。

作用:

       密度算子用于描述系统处于混合态时的统计性质。在纯态中,量子态可以由态矢量 |\Psi \rangle 表示,而混合态是不同纯态的概率组合,密度算子能够对这种混合态进行准确表述

       在纯态情况下,密度算子{\rho }=|\Psi _{}\rangle\langle\Psi _{}|,而在混合态中,它表示为多重量子态的加权平均。

性质:

       正定性:密度算子 \widetilde{\rho }是一个正定算符,意味着对任意量子态 |\Psi \rangle,有 \langle\Psi |\rho | \Psi \rangle\geq 0

       迹为1:密度算子的迹满足 tr(\rho )=1,这对应量子系统的总概率为1。

        纯态与混合态:对于纯态 |\Psi \rangle,密度算子是{\rho }=|\Psi _{}\rangle\langle\Psi _{}|,且​,即密度算子是幂等的\widetilde{\rho }=\widetilde{\rho }^{2}对于混合态,密度算子满足\widetilde{\rho }\neq \widetilde{\rho }^{2}


参考文献

1.深度科普|从线性代数到量子力学(1):量子力学的打开方式 (上) - 知乎 (zhihu.com)

2.(美)Michael ANielsen(迈克尔A.尼尔森),Isaac L.Chuang(艾萨克 L.庄). 量子计算与量子信息 10周年版[M]. 北京:电子工业出版社, 2022.02.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白光白光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值