『C++进阶』第四章--- AVL树

目录

1.1 AVL树的概念

1.2 AVL树节点的定义

1.3 AVL树的插入

1.4 AVL树的旋转

1.5 AVL树的验证

1.6 AVL树的删除(了解)

1.7 AVL树的性能


1.1 AVL树的概念

       二叉搜索树虽然可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单叉树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种能解决上述问题的方法: 

        当向二叉搜索树中插入新节点后,如果能保证每个节点的左右子树高度之差的绝对值不超过1(需要对树的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

        一颗AVL树或者空树,或者是具有以下性质的二叉搜索树:

  •  它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

 如果一颗二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在o(log2_n),搜索时间复杂度o(log2_n)。

1.2 AVL树节点的定义

        AVL树节点的定义:

template <class T>
struct  AVLTreeNode
{
	AVLTreeNode(const T& x)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(x)
		, _bf(0)
	{}

	AVLTreeNode<T>* _left;
	AVLTreeNode<T>* _right;
	AVLTreeNode<T>* _parent;
	T _data;
	int _bf;
};

1.3 AVL树的插入

        AVL树就是二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看作是二叉搜索树,那么AVL树的插入过程可以分为两步:

  1.  按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
	bool Insert(const pair<K, V>& kv)
	{

		//1. 先按照二叉搜索树的规则将节点插入到AVL树中
		// ...

		// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性


		// pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
		// 的平衡因子分为三种情况:-1,0,1,分以下两种情况:
		//1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子 - 1即可
		//2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子 + 1即可

		//此时: pParent的平衡因子可能有三种情况:0,正负1,正负2
		// 1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
		//成0,此时满足	AVL树的性质,插入成功
		//	2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
		//	新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
		//	3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
		//	行旋转处理

		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv._first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		Node* New = new Node(kv);
		if (parent->_kv.first < kv.first)  parent->_right = New;
		else   parent->_left = New;
		
		New->_parent = parent;

		while (parent)
		{
			if (New == parent->left) parent->_bf--;
			else parent->_bf++;

			if (parent->_bf == 0) break;
			else if (abs(parent->_bf) == 1)
			{
				New = parent;
				parent = parent->_parent;
			}
			else if (abs(parent->_bf) == 2)
			{
				// 旋转

			}
			else
			{
				assert(false);
			}

		}

	}

1.4 AVL树的旋转

      如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

      1. 新节点插入较高左子树的左侧 ---左左: 右单旋

	// 如上图,在插入前,AVL树是平衡的,新节点插入到30的左子树中,30左子树增加了一层,导致
	// 60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层
	// 即 将左子树往上提,将60转下来,因为60比30大,只能放在30的右子树,而如果30有右子树,右子树的根植一定大于30
	//小于60,只能将其放在60的左子树,旋转完成之后,更新节点的平衡因子即可
	//在旋转过程中,有以下几种情况需要考虑
	// 1. 30节点的右孩子可能存在,也可能不存在
	// 2, 60 可能是根节点,也可能是子树
	//如果是根节点,旋转完成后,要更新根节点,如果是子树,可能是某个节点的左子树,也可能是右子树,同样也需要更新
	void RotateR(Node* parent)
	{
		Node* PL = parent->_left;
		Node* PLR = PL->_righht;
		parent->_left = PLR;
		if (PLR) PLR->_parent = parent;
		PL->_right = Parent;
		Node* pparent = parent->_parent;
		PL->_parent = pparent;
		parent->_parent = PL;
		if (pparent == nullptr) 	_root = PL;
		else
		{
			if (pparent->_left == Parent) pparent->_left = PL;
			else pparent->_right=PL:
		}
		parent->_bf = PL->_bf = 0;
	}

2. 新节点插入较高右子树的右侧----右右: 左单旋

 实现及情况考虑,可以参考右单旋

	void RotateL(Node* parent)
	{
		Node* PR = parent->_right;
		Node* PRL = PR->_left;
		parent->_right = PRL;
		if (PRL) PRL->_parent = parent;
		PR->_left = parent;
		Node* pparent = parent->_parent;
		PR->_parent = pparent;
		parent->_parent = PR;
		if (pparent == nullptr) 	_root = PR;
		else
		{
			if (pparent->_left == parent) pparent->_left = PR;
			else pparent->_right = PR:
		}
		parent->_bf = PR->_bf = 0;
	}

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

         将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后 再考虑平衡因子的更新。

void RotateLR(Node* parent)
	{
		// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进
		//行调整
		Node* P = parent;
		Node* PL = parent->_left;
		Node* PLR = PL->_right;

		// 旋转前需要存在PLR的bf 来判断旋转后其他节点的bf值
		int bf = PLR->_bf;

		// 对30左旋
		RotateL(parent->_left);
		// 对90右旋
		RotateR(parent);

		if (bf == 1) PL->_bf = -1;
		else if (bf == -1) P->_bf = 1;
	}

        4. 新节点插入较高右子树的左侧---右左: 先右单旋再左单旋

       可参考右左双旋

	void RotateRL(Node* parent)
	{
		Node* P = parent;
		Node* PR = parent->_right;
		Node* PRL = PR->_left;

		int bf = PRL->_bf;

		RotateR(PR);
		RotateL(P);

		if (bf == 1) P->_bf = -1;
		else if (bf == -1) PR->_bf = 1;

	}

总结:

        假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑

        1. parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为PR

  •  当PR的平衡因子为1时,执行左单旋
  •  当PR的平衡因子为-1时,执行右左单旋

        2. parent的平衡因子为-2,说明parent的左子树高,设parent的左子树的根为PL

  •  当PL的平衡因子为-1时,执行右单旋
  •  当PL的平衡因子为1时,执行左右双旋

        旋转完成之后,原parent为根的子树高度降低,已经平衡,不需要再向上更新。

插入的完整代码如下

	bool Insert(const pair<K, V>& kv)
	{

		//1. 先按照二叉搜索树的规则将节点插入到AVL树中
		// ...

		// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性


		// pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
		// 的平衡因子分为三种情况:-1,0,1,分以下两种情况:
		//1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子 - 1即可
		//2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子 + 1即可

		//此时: pParent的平衡因子可能有三种情况:0,正负1,正负2
		// 1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
		//成0,此时满足	AVL树的性质,插入成功
		//	2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
		//	新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
		//	3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
		//	行旋转处理

		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		Node* New = new Node(kv);
		if (parent->_kv.first < kv.first)  parent->_right = New;
		else   parent->_left = New;
		
		New->_parent = parent;

		while (parent)
		{
			if (New == parent->_left) parent->_bf--;
			else parent->_bf++;

			if (parent->_bf == 0) break;
			else if (abs(parent->_bf) == 1)
			{
				New = parent;
				parent = parent->_parent;
			}
			else if (abs(parent->_bf) == 2)
			{
				if (parent->_bf == 2 && New->_bf == 1) RotateL(parent);
				else if (parent->_bf == -2 && New->_bf == -1) RotateR(parent);
				else if (parent->_bf == 2 && New->_bf == -1) RotateRL(parent);
				else  RotateLR(parent);
				break;
			}
			else
			{
				assert(false);
			}

		}

	}

1.5 AVL树的验证

        AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

        1. 验证其为二叉搜索树

            如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

         2. 验证其为平衡树

  •  每个节点子树高度差的绝对值不超过1
  • 节点的平衡因子是否计算正确
int Height(Node* root)
	{
		if (root == nullptr) return 0;
		return max(Height(root->_left), Height(root->_right)) + 1;
	}
	bool _IsBalanceTree(Node* root)
	{
		if (root == nullptr) return true;
		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);
		int bf = rightHeight - leftHeight;

		if (bf != root->_bf )
		{
			cout << 1 << endl;
			return false;
		}
		if (abs(bf) >= 2)
		{
			cout<<2<<endl;

			return false;
		}

		return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
	}

3. 验证用例

        可以结合上述代码按照以下的数据次序,验证下代码是否有漏洞

  • 常规场景1    {16, 3, 7, 11, 9, 26, 18, 14, 15}
  • 特殊场景2    {4, 2, 6, 1, 3, 5, 15, 7, 16, 14}

1.6 AVL树的删除(了解)

        因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,在不错与删除不同的时候,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

        具体实现可参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。

1.7 AVL树的性能

        AVL树是一颗绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查找时高效的时间复杂度,即o(log_2(N))。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如: 插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以参考AVL树,但一个结构经常修改,就不太适合了。

1.8 AVL完整代码参考

template <class K,class V>
struct  AVLTreeNode
{
	AVLTreeNode(const pair<K,V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}

	pair<K, V> _kv;
	AVLTreeNode<K,V>* _left;
	AVLTreeNode<K,V>* _right;
	AVLTreeNode<K,V>* _parent;
	int _bf;
};
template <class K, class V>
class AVLTree
{
public:
	typedef AVLTreeNode<K,V> Node;
	AVLTree() = default;
	AVLTree(const AVLTree& kv)
	{
		_root = Copy(kv->_root);
	}
	AVLTree* operator=(const AVLTree kv)
	{
		swap(_root, kv->root);
		return *this;
	}
	~AVLTree()
	{
		Destory(_root);
	}
	bool Insert(const pair<K, V>& kv)
	{

		//1. 先按照二叉搜索树的规则将节点插入到AVL树中
		// ...

		// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性


		// pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
		// 的平衡因子分为三种情况:-1,0,1,分以下两种情况:
		//1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子 - 1即可
		//2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子 + 1即可

		//此时: pParent的平衡因子可能有三种情况:0,正负1,正负2
		// 1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
		//成0,此时满足	AVL树的性质,插入成功
		//	2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
		//	新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
		//	3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
		//	行旋转处理

		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		Node* New = new Node(kv);
		if (parent->_kv.first < kv.first)  parent->_right = New;
		else   parent->_left = New;
		
		New->_parent = parent;

		while (parent)
		{
			if (New == parent->_left) parent->_bf--;
			else parent->_bf++;

			if (parent->_bf == 0) break;
			else if (abs(parent->_bf) == 1)
			{
				New = parent;
				parent = parent->_parent;
			}
			else if (abs(parent->_bf) == 2)
			{
				if (parent->_bf == 2 && New->_bf == 1) RotateL(parent);
				else if (parent->_bf == -2 && New->_bf == -1) RotateR(parent);
				else if (parent->_bf == 2 && New->_bf == -1) RotateRL(parent);
				else  RotateLR(parent);
				break;
			}
			else
			{
				assert(false);
			}

		}
		return true;
	}
	// 如上图,在插入前,AVL树是平衡的,新节点插入到30的左子树中,30左子树增加了一层,导致
	// 60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层
	// 即 将左子树往上提,将60转下来,因为60比30大,只能放在30的右子树,而如果30有右子树,右子树的根植一定大于30
	//小于60,只能将其放在60的左子树,旋转完成之后,更新节点的平衡因子即可
	//在旋转过程中,有以下几种情况需要考虑
	// 1. 30节点的右孩子可能存在,也可能不存在
	// 2, 60 可能是根节点,也可能是子树
	//如果是根节点,旋转完成后,要更新根节点,如果是子树,可能是某个节点的左子树,也可能是右子树,同样也需要更新
	void RotateR(Node* parent)
	{
		Node* PL = parent->_left;
		Node* PLR = PL->_right;
		parent->_left = PLR;
		if (PLR) PLR->_parent = parent;
		PL->_right = parent;
		Node* pparent = parent->_parent;
		PL->_parent = pparent;
		parent->_parent = PL;
		if (pparent == nullptr)
		{
			_root = PL;
		}
		else
		{
			if (pparent->_left == parent) pparent->_left = PL;
			else  pparent->_right = PL;
		}
		parent->_bf = PL->_bf = 0;
	}
	void RotateL(Node* parent)
	{
		Node* PR = parent->_right;
		Node* PRL = PR->_left;
		parent->_right = PRL;
		if (PRL) PRL->_parent = parent;
		PR->_left = parent;
		Node* pparent = parent->_parent;
		PR->_parent = pparent;
		parent->_parent = PR;
		if (pparent == nullptr) 	_root = PR;
		else
		{
			if (pparent->_left == parent) pparent->_left = PR;
			else  pparent->_right = PR;
		}
		parent->_bf = PR->_bf = 0;
	}

	void RotateLR(Node* parent)
	{
		// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进
		//行调整
		Node* P = parent;
		Node* PL = parent->_left;
		Node* PLR = PL->_right;

		// 旋转前需要存在PLR的bf 来判断旋转后其他节点的bf值
		int bf = PLR->_bf;

		// 对30左旋
		RotateL(parent->_left);
		// 对90右旋
		RotateR(parent);

		if (bf == 1) PL->_bf = -1;
		else if (bf == -1) P->_bf = 1;
	}
	void RotateRL(Node* parent)
	{
		Node* P = parent;
		Node* PR = parent->_right;
		Node* PRL = PR->_left;

		int bf = PRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == 1) P->_bf = -1;
		else if (bf == -1) PR->_bf = 1;

	}
	bool IsBalanceTree()
	{
		return _IsBalanceTree(_root);
	}
	void Inorder()
	{
		_Inorder(_root);
	}
private:

	Node* Copy(const Node* root)
	{
		if (root == nullptr) return;
		
		Node* x = new Node(root->_kv);
		x->_bf = root->_bf;
		x->_parent = root->_parent;
		x->_left = Copy(root->_left);
		x->_right = Copy(root->_right);
		return x;
	}
	void Destory(const Node* root)
	{
		if (root == nullptr) return;

		Destory(root->_left);
		Destory(root->_right);
		delete root;
	}
	void _Inorder(Node* root)
	{
		if (root == nullptr) return;

		_Inorder(root->_left);
		cout << root->_kv.first << ' ' << root->_kv.second << endl;
		_Inorder(root->_right);
	}
	int Height(Node* root)
	{
		if (root == nullptr) return 0;
		return max(Height(root->_left), Height(root->_right)) + 1;
	}
	bool _IsBalanceTree(Node* root)
	{
		if (root == nullptr) return true;
		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);
		int bf = rightHeight - leftHeight;

		if (bf != root->_bf )
		{
			cout << 1 << endl;
			return false;
		}
		if (abs(bf) >= 2)
		{
			cout<<2<<endl;

			return false;
		}

		return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
	}

	AVLTreeNode<K,V>* _root=nullptr;
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值