C++进阶-AVL树(map和set)

1.AVL树

4.1.1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年
发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
    在这里插入图片描述
    如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)

4.1.2 AVL树节点的定义

AVL树节点的定义:

// 节点类
template<class K,class V>
struct AVLTreeNode
{
	//K _key;// 节点数据
	AVLTreeNode<K,V>* _left;// 左孩子
	AVLTreeNode<K,V>* _right;// 右孩子
	AVLTreeNode<K,V>* _parent;// 父亲节点
	pair<K,V> _kv;// 数据
	int _bf;// 平衡因子

	// 构造函数
	AVLTreeNode(const pair<K,V>& kv)
		:_left(nullptr),
		_right(nullptr),
		_parent(nullptr),
		_bf(0),
		_kv(kv)
	{}
};

4.1.3 AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  • 1.按照二叉搜索树的方式插入新节点
  • 2.调整节点的平衡因子

插入的规则要求:

  1. 按照搜索树规则插入
  2. 更新插入节点的祖先节点的平衡因子
  • a.插入父亲的左边,父亲的平衡因子–
  • b.插入父亲的右边,父亲的平衡因子++
  • c.更新后父亲的平衡因子 == 0,父亲所在子树高度不变,不再继续往上更新,插入结束
  • d.更新后父亲的平衡因子 == 1 or -1,父亲所在子树高度变了,继续往上更新
  • e.更新后父亲的平衡因子 == 2 or -2,父亲所在子树已经不平衡了,需要旋转处理
    更新中不可能出现其他值,插入之前树是AVL树,平衡因子要么是1 -1 0,++ --最多就是c/d/e三种情况

插入(insert)方法
bool Insert(const pair<K,V>& kv)
1.先按照搜索树规则插入:
先判断是否为空,之后比较数据,小于节点数据则走左子树,大于走右子树,等于则错误(不能冗余)
找到插入位置,则判断左孩子还是右孩子

// 判断是否为空
if (_root == nullptr)
{
	// 插入的节点就时根节点
	_root = new Node(kv);
	return true;

}

//1.按照搜索树规则插入

// _root不为空时,要从根节点开始向下查询
// 记录父亲节点
Node* parent = nullptr;
Node* cur = _root;


// 循环结束条件,查找到叶子节点
while (cur)
{
	// kv的first小于cur的first,查找左子数
	// 反之,查找右子树
	if (kv.first < cur->_kv.first)
	{
		parent = cur;// 记录父亲节点
		cur = cur->_left;
	}
	else if (kv.first > cur->_kv.first)
	{
		parent = cur;
		cur = cur->_right;
	}
	else
	{
		return false;
	}
}

// 找到插入的位置时
cur = new Node(kv);

if (parent->_kv.first < kv.first)
{
	parent->_right = cur;
}
else
{
	parent->_left = cur;
}
cur->_parent = parent;

// 更新平衡因子
// ...
  1. 更新插入节点的祖先节点的平衡因子
    a.插入父亲的左边,父亲的平衡因子–
    b.插入父亲的右边,父亲的平衡因子++
// 插入完成后
// 更新平衡因子
// 2.更新插入节点的祖先节点的平衡因子
// 由下向上更新
// 这棵树的平衡因子定义为 平衡因子 = 右子树高度 - 左子树高度
// 由下往上改平衡因子
while (parent)
{
	// a.插入父亲的左边,父亲的平衡因子--
	if (cur == parent->_left)
	{
		parent->_bf--;
	}
	else// b.插入父亲的右边,父亲的平衡因子++
	{
		parent->_bf++;
	}



// 此处先省略
//...

}		

c.更新后父亲的平衡因子 == 0,父亲所在子树高度不变,不再继续往上更新,插入结束
d.更新后父亲的平衡因子 == 1 or -1,父亲所在子树高度变了,继续往上更新
在上面的省略处写

// 	c.更新后父亲的平衡因子 == 0,父亲所在子树高度不变,不再继续往上更新,插入结束
if (parent->_bf == 0) // 1 -1 -> 0
{
	// 更新完毕
	break;
}
// d.更新后父亲的平衡因子 == 1 or -1,父亲所在子 树高度变了,继续往上更新
else if (parent->_bf == 1 || parent->_bf == -1) // 0 -> 1 -1
{
	// 继续往上更新
	// 往上更新,将父亲给cur
	cur = parent;
	parent = parent->_parent;
}
// 	e.更新后父亲的平衡因子 == 2 or -2,父亲所在子树已经不平衡了,需要旋转处理
else if (parent->_bf == -2 || parent->_bf == 2) // 1 -1 -> 2 -2
{
//...
}

e.更新后父亲的平衡因子 == 2 or -2,父亲所在子树已经不平衡了,需要旋转处理

// 当前子树出问题了,需要旋转平衡一下
if (parent->_bf == -2 && cur->_bf == -1)// 右单旋
{
	RotateR(parent);
}
else if (parent->_bf == 2 && cur->_bf == 1)// 左单旋
{
	RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == 1)// 左右单旋 
{
	RotateLR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1)// 右左单旋
{
	RotateRL(parent);
}

插入方法的代码总和

bool Insert(const pair<K,V>& kv)
{
	// 判断是否为空
	if (_root == nullptr)
	{
		// 插入的节点就时根节点
		_root = new Node(kv);
		return true;

	}

	//1.按照搜索树规则插入


	// _root不为空时,要从根节点开始向下查询
	// 记录父亲节点
	Node* parent = nullptr;
	Node* cur = _root;


	// 循环结束条件,查找到叶子节点
	while (cur)
	{
		// kv的first小于cur的first,查找左子数
		// 反之,查找右子树
		if (kv.first < cur->_kv.first)
		{
			parent = cur;// 记录父亲节点
			cur = cur->_left;
		}
		else if (kv.first > cur->_kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			return false;
		}
	}
	 

	// 找到插入的位置时
	cur = new Node(kv);

	if (parent->_kv.first < kv.first)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}
	cur->_parent = parent;


	// 插入完成后
	// 更新平衡因子
	// 2.更新插入节点的祖先节点的平衡因子
	// 由下向上更新
	// 这棵树的平衡因子定义为 平衡因子 = 右子树高度 - 左子树高度

	// 由下往上改平衡因子
	while (parent)
	{
		// a.插入父亲的左边,父亲的平衡因子--
		if (cur == parent->_left)
		{
			parent->_bf--;
		}
		else// b.插入父亲的右边,父亲的平衡因子++
		{
			parent->_bf++;
		}
		


		// 	c.更新后父亲的平衡因子 == 0,父亲所在子树高度不变,不再继续往上更新,插入结束
		if (parent->_bf == 0) // 1 -1 -> 0
		{
			// 更新完毕
			break;
		}
		// d.更新后父亲的平衡因子 == 1 or -1,父亲所在子 树高度变了,继续往上更新
		else if (parent->_bf == 1 || parent->_bf == -1) // 0 -> 1 -1
		{
			// 继续往上更新
			// 往上更新,将父亲给cur
			cur = parent;
			parent = parent->_parent;
		}
		// 	e.更新后父亲的平衡因子 == 2 or -2,父亲所在子树已经不平衡了,需要旋转处理
		else if (parent->_bf == -2 || parent->_bf == 2) // 1 -1 -> 2 -2
		{
			// 当前子树出问题了,需要旋转平衡一下
			if (parent->_bf == -2 && cur->_bf == -1)// 右单旋
			{
				RotateR(parent);
			}
			else if (parent->_bf == 2 && cur->_bf == 1)// 左单旋
			{
				RotateL(parent);
			}
			else if (parent->_bf == -2 && cur->_bf == 1)// 左右单旋 
			{
				RotateLR(parent);
			}
			else if (parent->_bf == 2 && cur->_bf == -1)// 右左单旋
			{
				RotateRL(parent);
			}

			break;
		}
	}

	return true;

}

4.1.4 AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种

  1. 新节点插入较高左子树的左侧—左左:右单旋
    在这里插入图片描述
// 旋转只有看parent的节点
// 右单旋
void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;


	parent->_left = subLR;
	// 每个节点的父亲也要记得修改
	if (subLR != nullptr)
	{
		subLR->_parent = parent;
	}
	
	Node* ppNode = parent->_parent;
	subL->_right = parent;
	parent->_parent = subL;


	// 更新平衡因子
	// 注意两个关键情况:
	// 1.parent为根节点
	// 2.parent是第二层的节点

	if (parent == _root)
	{
		_root = subL;
		_root->_parent = nullptr;
	}
	else
	{
		if (ppNode->_left == parent)
		{
			ppNode->_left = subL;
		}
		else
		{
			ppNode->_right = subL;
		}

		subL->_parent = ppNode;
	}

	// 更新平衡因子
	parent->_bf = subL->_bf = 0;
}
  1. 新节点插入较高右子树的右侧—右右:左单旋
// 左单旋
void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	parent->_right = subRL;
	if (subRL != nullptr)
	{
		subRL->_parent = parent;
	}
	

	Node* ppNode = parent->_parent;
	
	subR->_left = parent;
	parent->_parent = subR;


	// 更新平衡因子
	// 注意两个关键情况:
	// 1.parent为根节点
	// 2.parent是第二层的节点
	if (parent == _root)
	{
		_root = subR ;
		subR->_parent = nullptr;
	}
	else
	{
		if (ppNode->_left == parent)
		{
			ppNode->_left = subR;
		}
		else
		{
			ppNode->_right = subR;

		}
		subR->_parent = ppNode;
	}
	// 更新平衡因子
	parent->_bf = subR->_bf = 0;
}
  1. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋
    这里面又分为三种情况:

a.60自己就是新增
在这里插入图片描述

b.b插入时,引发的旋转
在这里插入图片描述

c.c插入时,引发的旋转
在这里插入图片描述

// 左右单旋
void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	int bf = subLR->_bf;// 记录一下平衡因子

	// 先进行左单旋,在进行右单旋
	RotateL(subL);
	RotateR(parent);

	//更新平衡因子三种情况
	// 1.60自己就是新增
	if (bf == 0)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 0;
	}
	// 2.60的平衡因子为-1,b插入
	else if (bf == -1)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 1;
	}
	// 3.60的平衡因子为1,c插入
	else if (bf == 1)
	{
		subLR->_bf = 0;
		subL->_bf = -1;
		parent->_bf = 0;
	}
	else
	{
		assert(false);
	}
}
  1. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋
    a.60自己就是新增
    在这里插入图片描述

b.b插入时,引发的旋转
在这里插入图片描述

c.c插入时,引发的旋转
在这里插入图片描述

// 右左单旋
void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	// 记录平衡因子
	int bf = subRL->_bf;

	// 先右旋,在左旋
	RotateR(subR);
	RotateL(parent);

	subRL->_bf = 0;
	// 更新平衡因子三种情况
	// 1.60自己就是新增
	if (bf == 0)
	{
		subR->_bf = 0;
		parent->_bf = 0;
	}
	// 2.60的平衡因子为-1,b插入
	else if (bf == -1)
	{
		subR->_bf = 1;
		parent->_bf = 0;
	}
	// 3.60的平衡因子为1,c插入
	else if (bf == 1)
	{
		subR->_bf = 0;
		parent->_bf = -1;
	}
	else
	{
		assert(false);
	}
}

4.1.5 AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

    1. 验证其为二叉搜索树
      如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
    1. 验证其为平衡树
      每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
      节点的平衡因子是否计算正确

4.1.6 AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
具体实现学生们可参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。

	// 中序输出
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
	// 判断平衡
	bool IsBalance()
	{
		return _IsBalance(_root);
	}
	//计算高度
	int Height()
	{
		return _Height(_root);
	}
	// 节点数量
	int Size()
	{
		return _Size(_root);
	}
	
private:
	 
	// 计算节点个数基本
	int _Size(Node* root)
	{
		if (root == nullptr)
		{
			return 0;
		}

		return _Size(root->_left) + _Size(root->_right) + 1;
	}

	// 计算高度基本
	int _Height(Node* root)
	{
		if (root == nullptr)
		{
			return 0;
		}

		return max(_Height(root->_left), _Height(root->_right)) + 1;
	}


	// 判断平衡基本
	bool _IsBalance(Node* root)
	{
		if (root == nullptr)
		{
			return true;
		}

		int leftHight = _Height(root->_left);
		int rightHight = _Height(root->_right);

		// 不平衡
		if (abs(rightHight - leftHight) >= 2)
		{
			return false;
		}

		// 顺便检查一下平衡因子是否正确
		if (rightHight - leftHight != root->_bf)
		{
			cout << root->_kv.first << endl;
			return false;
		}

		// 判断左子树和右子树是否平衡
		return _IsBalance(root->_left)
			&& _IsBalance(root->_right);
	}
	
	// 中序输出基本
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);

	}

4.1.7 AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下。
比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

  • 10
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值